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Construction details and sequenceConstruction details and sequence
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General Excavation sequence for M3 – up to level for 
removal of sacrificial JGP and installation of 10th level strut
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Events and observations prior to collapseEvents and observations prior to collapseEvents and observations prior to collapseEvents and observations prior to collapse
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Excavation for the 10th level of struts, including removal of the sacrificial JGPExcavation for the 10 level of struts, including removal of the sacrificial JGP



Observations on the morning of the collapse
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Instrumentation and results of monitoringInstrumentation and results of monitoringInstrumentation and results of monitoringInstrumentation and results of monitoring
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Change in Measured Load at Strut 335

5000

4000

4500

5000

336(N) & 337(N) 

Waler Buckling Observed 

Support Bracket at 335(S) Drops Off
335(N) 

Waler Buckling Observed

3000

3500

4000

(k
N

)

2000

2500

3000

tru
t l

oa
d 

1500

2000
Strut Load 335-9

Strut Load 335-8

338(N) & 335(S)ea
su

re
d 

s

500

1000 338(N) & 335(S) 

Waler Buckling ObservedM
e

0
6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

Time on 20April 2004



Observed trends in 8th and 9th strut loads
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The trends were consistent with there being g
yielding of the 9th level strut-waler connection 
when the excavation passed beneath but with 

f th i ifi t h i l d i ithno further significant changes in load in either 
the 9th or 8th level struts until the collapse was 
initiatedinitiated
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• S338-9 stood for 8 days under load and was 20m• S338-9 stood for 8 days under load and was 20m 
from excavation front

• S335 9 stood for 2 5 days under load and was over• S335-9 stood for 2.5 days under load and was over 
8m from excavation front

B th S335 9S & S338 9N b kl d ithi 10 i t• Both S335-9S & S338-9N buckled within 10 minutes

• Load in S335-8 and S335-9 was almost constant 
b t 18 A il d i iti ti f llbetween 18 April and initiation of collapse

• All C-channel connections failed downwards at both 
ends

• The south wall was pushing the north wall back

Key observations

The south wall was pushing the north wall back



The collapseThe collapse
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Post-collapse investigationsPost collapse investigations

Design errors



Errors
• Misinterpretation of BS5950 with regard to stiff 

b i l hbearing length
• Omission of splays

Effects
• Design capacity of strut-waler connection was 50% ofDesign capacity of strut waler connection was 50% of 

required design capacity where splays were omitted

Errors in structural design of strutErrors in structural design of strut--waler connectionwaler connection



• Capacity based on BS5950:1990 = 2550 kN• Capacity based on BS5950:1990 = 2550 kN

• Average ultimate capacity based on physicalAverage ultimate capacity based on physical 
load tests = 4100 kN

9 % f• Based on mill tests, 95% of connections had 
capacity of 3800 kN- 4400kN

• Predicted 9th level strut load in 2D analyses 
which ignored bored piles was close to 
ultimate capacity therefore collapse wasultimate capacity therefore collapse was 
considered by the COI to be inevitable

Inevitability of collapse



• Method A and Method B refer to two alternative ways of 
modelling undrained soil behaviour in Plaxis (Pickles, 
2002)2002)

• Method A is an effective stress analysis of an undrained 
blproblem

• Assumes isotropic elastic behaviour and a Mohr-
C fCoulomb failure criterion

• As a result mean effective stress p’ is constant until yieldp y

• Method A was being applied to marine clays which were 
of low over-consolidation or even under-consolidatedof low over consolidation or even under consolidated 
because of recent reclamation

• Method B is a total stress analysis

Methods A and B
Method B is a total stress analysis
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Cu from Method A

Cu from Method B

p’

The shortcomings of Method A



105 105

Method A Method B

90

95

100

90

95

100

75

80

85

R
L 

(m
)

75

80

85

R
L 

(m
)

60

65

70

60

65

70

55
-0.050 0.000 0.050 0.100 0.150 0.200 0.250 0.300

Wall Disp. (m)

Exc to RL 100.9 for S1 Exc to RL 98.1 for S2 Exc to RL 94.6 for S3

Exc to RL 91.1 for S4 Exc to RL 87.6 for S5 Exc to RL 84.6 for S6

55
-0.050 0.000 0.050 0.100 0.150 0.200 0.250 0.300

Wall Disp. (m)

Exc to RL 100.9 for S1 Exc to RL 98.1 for S2 Exc to RL 94.6 for S3

Exc to RL 91.1 for S4 Exc to RL 87.6 for S5 Exc to RL 84.6 for S6

M3 S th W ll Di l t

Exc to RL 81.6 for S7 Exc to RL 78.3 for S8 Exc to RL 75.3 for S9

Exc to RL 72.3 for S10

Exc to RL 81.6 for S7 Exc to RL 78.3 for S8 Exc to RL 75.3 for S9

Exc to RL 72.3 for S10

M3 - South Wall Displacement
Method A versus  Method B



95

100

105

100

105

Method A Method B

75

80

85

90

95

R
L 

(m
)

75

80

85

90

95

R
L 

(m
)

55

60

65

70

75

55

60

65

70

75

-3
00

0

-2
50

0

-2
00

0

-1
50

0

-1
00

0

-5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Bending Moment (kNm/m) -3
00

0

-2
50

0

-2
00

0

-1
50

0

-1
00

0

-5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Bending Moment (kNm/m)

M3 - South Wall bending moments
Method A versus Method BMethod A versus  Method B



M th d A Method B
g ( )

2206
2200
2400
2600
2800
3000

_ S1

2383

2000
2200
2400
2600
2800
3000

Method A Method B

800
1000
1200
1400
1600
1800
2000
2200

S
tru

t L
oa

d 
(k

N
/m

)
_ S1

S2

S3

S4

S5

S6

S7 800
1000
1200
1400
1600
1800
2000

S
tru

t L
oa

d 
(k

N
/m

)

S1

S2

S3

S4

S5

S6

0
200
400
600 S8

S9

0
200
400
600 S7

S8

S9

M3 – strut forces
Method A versus  Method B



• Method A over-estimates the undrained shear 
strength of normally and lightly overconsolidated 
lclays

• Its use led to a 50% under-estimate of wall 
displacements and of bending moments and an 
under-estimate of the 9th level strut force of 10%

• The larger than predicted displacements mobilised 
the capacity of the JGP layers at an earlier stage p y y g
than predicted

Method AMethod A



St t l d i• Structural design errors

• Removal of splays at some strut locationsp y

• Introduction of C-channel waler connection detail

• Use of Method A in soil-structure interaction analysis

C ll i it bl f th• Collapse was an inevitable consequence of the 
design errors which led to the applied loads on the 
struts increasing with time and equalling the capacity 
of the strut-waler connectionof the strut-waler connection

COI view on the principal causes of
the collapse
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Post-collapse investigationsPost collapse investigations

Jet grout



Excavation of sacrificial JGP in Type H



JGP quality in 100mm cores from borehole M1 in Type KJGP quality in 100mm cores from borehole M1 in Type K



Shear wave velocity measurements in JGP at Type K



5 Shear wave section

4

Pressuremeter section

3

ck
ne

ss
 (m

)

2

JG
P

 th
ic

Design thickness

1

0 2 4 6 8

0

Thicknesses of JGP in Type K



Post-collapse investigationsPost collapse investigations

Ground conditions and
soil propertiessoil properties
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Buried valley in the Old Alluvium



Buried valley in the Old Alluvium



Coincidence between buried valley and
distortion to upper F2 layer



• There was a buried valley crossing the site of the 
collapse diagonally from south-west to north-east

• The presence and setting of the buried valley explain 
the asymmetric conditions and the different collapse 
on the north and south sideson the north and south sides

• The buried valley coincides with the major ground 
distortion on the south side and was clearly influential 
in the collapse

• Below the Lower Marine Clay the buried valley was 
infilled with estuarine organic clays on the south sideinfilled with estuarine organic clays on the south side 
and fluvial clays on the north side

• Gas exsolution almost certainly occurred in the deep y p
organic clays as a result of stress relief, reducing 
their strength further

The buried valleyThe buried valley
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• The buried valley was crossed without collapse 
developing

• Strut forces would have been a maximum in the 
buried valley and would have varied across the valley

• The collapse was not, therefore, inevitable

• An external influence (trigger) is required to explain 
the timing of the collapse and why it occurred afterthe timing of the collapse and why it occurred after 
crossing the buried valley

Significance of crossing the buried valley without Significance of crossing the buried valley without 
collapsecollapse



• S338-9 stood for 8 days under load and was 20m 
from excavation frontfrom excavation front

• S335-9 stood for 2.5 days under load and was over 
8m from excavation front8m from excavation front

• Both S335-9S & S338-9N buckled within 10 minutes

• Load in S335-8 and S335-9 was almost constant 
between 18 April and initiation of collapse

• All C-channel connections failed downwards at both 
ends

• The south wall was pushing the north wall back

Key observations



• 3D effects cannot explain why the collapse was 
initiated at 9am – S338 was 20-24m from theinitiated at 9am S338 was 20 24m from the 
excavation face and had stood for 8 days without 
distress, S335 was 8-12m from the excavation face

• Time effects cannot explain why the collapse was 
initiated at 9am – there was no evidence of loadinitiated at 9am there was no evidence of load 
increases in the monitoring

Potential triggersPotential triggers
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Post-collapse investigationsPost collapse investigations

Back analyses of the collapse



• Analyses by Dr Felix Schroeder and Dr Zeljko 
Cabarkapa using Imperial College Finite Element p g p g
Program (ICFEP)

• 2D section through M307 (I104) and M302 (I65)• 2D section through M307 (I104) and M302 (I65)

• Bored piles are not modelled (enhanced JGP)p ( )

• Upper and Lower Marine Clays, F2 and lower Estuarine 
Clay modelled using Modified Cam ClayClay modelled using Modified Cam Clay

• Coupled consolidationp

• Fill and OA sand modelled using Mohr Coulomb. OA-CZ 
clay/silt modelled as Tresca

Geotechnical analyses
clay/silt modelled as Tresca



W ll EI d d t ll f ki b d• Wall EI reduced to allow for cracking, based on 
reinforcement layout

• Bending moment capacities set according to 
reinforcement layout and ultimate strengths of steel 
and concrete as supplieda d co c ete as supp ed

• JGP treated as brittle material

• 9th level strut capacity set and strut allowed to strain 
soften 72 hours after excavation to 10th level. 

Geotechnical analyses



North South

F2 F2

Upper Marine Clay Upper Marine Clay

Estuarine Estuarine
Fill Fill

+102.9
+98.58
+96.58

+84.58
+81.58

+102.9
+98.58
+97.07

+85.57
+82.07

OA (Sand) - OA-CZ

OA (Sand) - OA-CZ
OA (Clay/Silt) - OA-SW-1

F2

Lower Marine Clay
Lower Marine Clay+71.00

+67.00
+63.00 +63.57

+61.57
+57.57

OA (Clay/Silt) - OA-CZ OA (Clay/Silt) - OA-CZ

Stratigraphy assumed for ICFEP analyses





North wall               9th             South wall

95

100

95

100

85

90

85

90

measured
predicted

80

85

80

85

predicted

n 
(m

 R
L)

measured

predicted

70

75

70

75

E
le

va
tio

60

65 65

55

60

50 0 50 100 150 200 250 300 350
55

60

450 -400 -350 -300 -250 -200 -150 -100 -50 0 50

Horizontal displacement (mm) Horizontal displacement (mm)



North wall               10th           South wall

95

100

95

100

85

90

85

90

measured
predicted

80

85

80

85

n 
(m

 R
L)

measured
predicted

predicted

70

75

70

75

E
le

va
tio

60

65 65

55

60

50 0 50 100 150 200 250 300 350
55

60

450 -400 -350 -300 -250 -200 -150 -100 -50 0 50

Horizontal displacement (mm) Horizontal displacement (mm)



Predicted trends in 7th, 8th and 9th strut loadsed cted t e ds , 8 a d 9 st ut oads
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Observed trends in 8th and 9th strut loads
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• The analyses matched reasonably well the build up in• The analyses matched reasonably well the build up in 
horizontal wall movements, and the trends in the forces 
in the 7th, 8th and 9th level struts

• To match movements and forces at all stages it was 
necessary to model the jet grout as a brittle material

• The upper JGP was predicted to pass its peak strength 
during excavation to the 6th level and the lower JGP toduring excavation to the 6th level and the lower JGP to 
pass its peak strength during excavation to the 9th level

Th 9 h l l h d i i d i i• The 9th level strut reached its capacity during excavation 
to the 10th level

Key findings from geotechnical analyses



• The collapse had to be initiated by allowing the 9th level 
strut to strain soften – a ductile failure of the connection 
was not associated with a collapse

• The bending moment capacity of the south wall was 
reached on the first stage of excavation below the 9th 
l l b t hi did t f i th ll til thlevel, but a hinge did not form in the wall until the 
sacrificial JGP layer had been removed

Key findings from geotechnical analyses



Trigger required to initiate collapseTrigger required to initiate collapseTrigger required to initiate collapseTrigger required to initiate collapse

Relative vertical displacement between 
the kingposts and Dwall panels
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• Calibrated FE analyses predict downwardCalibrated FE analyses predict downward 
displacement of Dwall and upward displacement of 
kingpost when sacrificial JGP layer excavated

• Survey data supports upward vertical displacement of 
centre of strut relative to ends

Relative vertical displacementRelative vertical displacement
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Post-collapse investigationsPost collapse investigations

Structural steel physical tests
and numerical analyses.

The effect of relative verticalThe effect of relative vertical 
displacement
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Test on C channel stiffened connection by Nishimatsu



Test on C channel stiffened connection by Nishimatsu
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Effect of brittleness of strut to waler connection
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Effect of brittleness of strut to waler connection
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Th l ti ti l di l t b t th• There was relative vertical displacement between the 
diaphragm wall, which settled when the sacrificial 
JGP was removed, and the kingpost, which rose, i.e. gp
relative vertical displacement between the ends and 
centre of the strut (RVD)

• The strut-waler connection was ductile-brittle. The 
ductile plateau explains why both ends could failp p y

• The brittleness of the connection determines the time 
taken for the collapse to develop

Trigger required to initiate collapseTrigger required to initiate collapse



• RVD reduces the length of the ductile plateau and• RVD reduces the length of the ductile plateau and 
increases the brittleness

RVD k t bl it ti t bl• RVD can make a stable situation unstable

• RVD can shorten the time to collapse

• Why downward failure at both ends?Why downward failure at both ends?

• Why collapse after crossing the buried valley?

Trigger required to initiate collapseTrigger required to initiate collapse



• Free
• Fixed
• Forced sway

Downward failure at both endsDownward failure at both ends





Trigger required to initiate collapseTrigger required to initiate collapseTrigger required to initiate collapseTrigger required to initiate collapse

Post-collapse positions of the Dwall 
panels
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Post-collapse geometry superimposed on buried valley



31650

CL-2

31640

66KVS
BS1Ea

SPTSa19
.6

13
.5

7.
5

9.27

TUNNEL
SOUTH WALL

31640

TH
IN

G
 (m

)

WS10

WS14
WS15WS16

WS8WS9

W
S1

1
W

S1
1A

W
S1

1B
S1

1C

W
S1

2
W

S1
2A

W
S1

2B
12

C

W
S1

3
W

S1
3A

W
S1

3B
3C

11

14
.7

12 1 915
.

2.
5

16 2613
.

2.
5

31630

NO
R

T

CS1

WS17 W
S

W
S1

W
S1 112

WS11E
WS12E

WS11D
WS12D

Post collapse SI boreholes
Magnetic logging boreholes
Unsuccessful magnetic logging boreholes
2005 boreholes

WS11F

WS13F

WS13E

31670 31680 31690 31700

EASTING (m)

31620

Coincidence between inability to advance boreholes and 
missing Dwall panels

EASTING (m)



WS11E,11F,

12E,13F
WS11-13A-D

Obstruction created by missing Dwall panels



2 3

M306
1

Gap
1

M306M212

1

M306Gap M306M212

1. Panels M306 and M212, each side of the 
gap, and panel 213 fail by toe kick-in and 
rotate backrotate back.

2. Soil flows through resulting gap between 
M306 and M307, rotating panel 307.

3 S il fl th h lti b t3. Soil flows through resulting gap between 
M307 and M308, rotating panel 308, etc.

Sequence of south wall panel movements
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• The bored piles had a major influence on the 
displacements of the Dwall panels during the 
collapse and on their post-collapse positions

• The bored piles restricted toe movements on the• The bored piles restricted toe movements on the 
south side and prevented failure as the buried valley 
was crossed

• Loads carried by the bored piles contributed to the 
under reading of the strain gaugesunder-reading of the strain gauges

Significance of the bored pilesSignificance of the bored piles
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• Upward displacement of KP 180 and 181• Upward displacement of KP 180 and 181 
accentuated by toe displacement of M306 and M212, 
where bored piles had been re-positioned and 
dditi l t t ibladditional toe movement was possible

• Resulting RVD fed back into buried valley• Resulting RVD fed back into buried valley

Relative vertical displacementRelative vertical displacement
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• C channel stiffened connection undergoes brittle 
failure

• Critical length of strut and of load in strut result in 
minimal lateral restraint to connection

• Restraint from rising kingpost results in downward 
force on connection

• RVD results in reduction in ductility of connection and• RVD results in reduction in ductility of connection and 
increase in brittleness

• RVD makes a stable situation with overstress 
blunstable 

• RVD results in downward failure of connection

• RVD was the trigger for the failure

Failure mode of connection and RVDFailure mode of connection and RVD



Overall conclusions

• The use of Method A in the numerical analyses to model 
near normally consolidated soils is fundamentally 
incorrect

• Its use led to under prediction of wall displacements and• Its use led to under-prediction of wall displacements and 
bending moments and so to a reduction in the 
redundancy in the system. The JGP was strained 
beyond its peak and a plastic hinge formed in the wall as 
excavation of the sacrificial JGP was underway



Overall conclusions

• There were errors in the design of the strut-waler connection 
resulting in a design capacity that was 50% of the required 
capacity where splays were omittedcapacity where splays were omitted

• The collapse initiated some time after the excavation crossed 
th b i d ll h f th d d i d t tthe buried valley, where forces on the under-designed strut-
waler connections would have been a maximum

• An additional perturbation or trigger was necessary to explain 
the timing of the collapse, the downward failure of the walers at 
both ends and the trends in the monitoring data



Overall conclusions

• The permanent bored piles in combination with the JGP 
played a significant role in preventing the collapse as the p y g p g p
valley was crossed

• The collapse was triggered when working in the vicinity of• The collapse was triggered when working in the vicinity of 
the 66kV cable crossing

• At this location, the permanent bored piles had been 
repositioned and the JGP layout had been modified, 
allowing the wall toe to kick-in and cause additional uplift of g p
the local kingposts



Overall conclusions

• This additional upward displacement of the kingposts relative to 
the wall fed back into the system, introducing forced sway 
failurefailure

• Downward movement of the walls has been predicted by 
analysis; the potential for relative upward movement of theanalysis; the potential for relative upward movement of the 
kingposts has been confirmed by surveys

Forced s a fail re red ced the strain o er hich the• Forced sway failure reduced the strain over which the 
connection remained ductile, increased the brittleness of the 
connection and allowed a stable situation to become unstable

• Forced sway failure can explain the timing of the collapse, the 
form of the observed distortions, the trends in the monitoring 
data and the speed at which the collapse developeddata, and the speed at which the collapse developed



Overall conclusions

• The collapse was not caused by hydraulic base 
heave and was not related to poor workmanshipheave and was not related to poor workmanship

• Wall rotation, which had been linked with inadequate , q
penetration of the wall into the OA, was not the cause 
of the collapse

• Several factors had to act in combination to cause 
the collapsethe collapse



Unforgiving site

• Deepest excavation in marine clay in Singapore –shortcomings 
in use of Method A not previously apparent because of depth 
dependence

• Ground conditions – buried valley in OA infilled with soft fluvial 
and organic clay, rapid variation in depth of marine clay along 

d th ti lti i t i tiand across the excavation resulting in an asymmetric section

• Curvature of walls in plan requiring more frequent use of p q g q
walings

• Presence of 66kVA crossing• Presence of 66kVA crossing

• Need to adopt sacrificial JGP layer, removal of which caused p y ,
step increase in 9th level strut load and step increase in wall 
settlement



Lessons learnt

• JGP is a brittle material

• The mass properties of JGP need to be more carefully 
evaluated

• Coring of JGP is not an adequate check

• The use of numerical modelling of soils in design should be 
carried out by specialists and its incompatibilities with 
current codes needs to be removedcurrent codes needs to be removed

• The potential for brittle failure of C channel connections 
t b i dmust be recognised



Lessons learnt

• Temporary and permanent works should be subject to 
independent checks

• The effects of relative displacement between kingposts 
and walls should be considered in the design of strutted g
excavations

• Forced sway failure and its consequences should be y q
recognised as a potential mechanism in design

• Monitoring did not warn of the impending collapseMonitoring did not warn of the impending collapse


