Τα Νέα της ΕΕΕΕΓΜ

Αποτελέσματα Αρχαιρεσιών 21ης Οκτωβρίου 2015 για την Εκλογή νέας Εκτελεστικής και Εξελεγκτικής Επιτροπής

Στην Γενική Συνέλευση της 21ης Οκτωβρίου συμμετείχαν 31 ταμειακώς εν τάξει μέλη της ΕΕΕΕΓΜ, ενώ στις αρχαιρεσίες συμμετείχαν και 20 ακόμα μέλη με επιστολική ψήφο. Τα αποτελέσματα της ψηφοφορίας ήταν τα ακόλουθα:

ΕΚΤΕΛΕΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

1. Γκαζέτας Γεώργιος 33
2. Αναγνωστόπουλος Ανδρέας 30
3. Πανταζίδου Μαρίνα 29
4. Ντούλης Γεώργιος 28
5. Βέττας Παναγιώτης 27
6. Μπαρδάνης Μιχαήλ 27
7. Ξενάκη Βάλια 24
8. Παχάκης Μιχαήλ 23
9. Μπελόκας Γεώργιος 18
10. Ιωαννίδης Κωνσταντίνος 12

Οι 9 πρώτοι εκλέγονται ως τακτικά μέλη και ο δέκατος ως αναπληρωματικό μέλος.

ΕΞΕΛΕΓΚΤΙΚΗ ΕΠΙΤΡΟΠΗ

1. Αλεξανδρής Ανάργυρος 30
2. Κοζομπόλης Απόστολος 24
3. Τυρολόγου Παύλος 14

Εκλέγονται όλοι ως τακτικά μέλη.
Sμημείωμα
tου απερχομένου Προέδρου της EΕΕΕΓΜ

Αγαπητοί συνάδελφοι,

Η θητεία μου, ως Πρόεδρος της EΕΕΕΓΜ, λήγει την Τετάρτη, 11 Νοεμβρίου 2015, ημέρα που θα εκλεγή ο νέος Πρόεδρος.

Τον Μάιο 2008 και τον Μάιο 2012 τα τότε μέλη της Εκτελεστικής Επιτροπής με ετήσιαν εκλέγοντας και επανεκλέγοντας με ως Πρόεδρο της EΕΕΕΓΜ για δύο διαδοχικές θησείς. Όλα αυτά τα χρόνια προσπάθησα να προβάλω τη Γεωτεχνική Κηλιδή και το επαγγέλμα του Γεωτεχνικού Μηχανικού (Γεωμηχανικό) στην ελληνική τεχνική κοινότητα, καθώς και να προβάλω την EΕΕΕΓΜ σε διεθνή επίπεδο. Νομίζω ότι κάτι καταφέραμε.

Σε εθνικό επίπεδο η παρουσία μας ήταν αισθητή, τόσο με τον μεγάλο αριθμό, όσο και με την ποιότητα των εκδηλώσεων (στις οποίες συμμετείχαν κάποιοι από τα μεγαλύτερα συνοματικά της Γεωτεχνικής Μηχανικής παγκοσμίως), τον μεγάλο αριθμό των συμμετέχων σε αυτές, ιδιώς νέων συνδέσμων, αλλά και με την προσφορά του ελληνικού περιοδικού μας ΤΑ ΝΕΑ ΤΗΣ EΕΕΕΓΜ, το οποίο έχει γίνει υπέδειξη και για τις άλλες επιστημονικές ενίσχυσε.

Σε διεθνές επίπεδο η παρουσία μας αναβαθμίστηκε σημαντικά: Διεκδικήσαμε, κερδίσαμε και διοργάνωσαμε το Ευρωπαϊκό Conference on Soil Mechanics and Geotechnical Engineering που, παρά την κρίση στην οποία είχε ήδη εισέλθει η χώρα μας, είχε μεγάλη επιτυχία. Επίσης, μεγάλο αριθμό μελών της EΕΕΕΓΜ συμμετείχαν και συμμετείχε με ως key persons σε δικές τεχνικές επιτροπές της ISSMGE, καθώς και σε πανευρωπαϊκές διεθνείς συνεδρίες.

Όλα τα παραπάνω δεν μπορούσαν να γίνουν παρά μόνο με την αμέτρητη συμμετοχή και συνεργασία των μελών των Εκτελεστικών Επιτροπών της EΕΕΕΓΜ, τα οποία ολόθερμα ευχαριστούμε. Ευχαριστώ επίσης τις κυρίες Μαρικεφαλάκου, Αθανασίου και Παντελίδη της Γραμματείας του Τμήμα Γεωτεχνικής της Σχολής Πολιτικών Μηχανικών ΕΜΠ για την συνεισφορά τους, θέμα ευχαριστούμε πρώτα πελάτες να πω και στα στελέχη του γραφείου μου ΠΑΝΑΓΙΑ ΣΥΜΒΟΥΛΙΟΥ ΜΗΧΑΝΙΚΟΙ, και ιδιαίτερα στην γραμματέα μου κυρία Κηλιά Κω-στοπούλου, που υπήρξε βασικό πρόξενη στην όλη πρόσφατη μου. Τέλος, ευχαριστώ την σύζυγό μου, συνεταιρισμό και συνδέσμου Φήνη Τσατσανίδου για την υποστήριξη και την ανοχή της όλα αυτά τα χρόνια, όταν πολλές φορές οι υπο- χρεώσεις μου στην EΕΕΕΓΜ προηγούνταν των επαγγελματικών και οικογενειακών!

Μετά από 25 χρόνια συνεχόμενης παρουσίας μου στην Εκτελεστική Επιτροπή, δεν συμμετέχω στις προσφάτες αρχειακές. Οι επαγγελματικές υποχρεώσεις μου με υποχρεώνουν σήμερα να εργάζομαι τον περισσότερο χρόνο μου στο εξωτερικό, οπότε η ενδεχόμενη επανεκλογή μου στην Εκτελεστική Επιτροπή θα αποτελούσε εμπόδιο για την εκλογή νέων συνάδελφων, που μπορούσαν να προσφέρουν περισσότερα με τον καθημερινό οργανισμό τους στην Ελλάδα. Όμως δεν θα χάθω τελειώς! Η νέα Εκτελεστική Επιτροπή μπορεί να υπολογίζει σε εμένα, όποιο μπορούσε να βοηθήσει. Και βέβαια, εφ’ όσον η Εκτελεστική Επιτροπή και ο νέος Πρόεδρός το επιθυμούν, θα συνεχίσω να εκδίδω το περιοδικό μας. Προσωπικά, ο στόχος μου είναι να εκδώσω και το 100η τέχνος!

Είμαι στον νέο Πρόεδρο και στην νέα Εκτελεστική Επιτροπή κάθε επιτυχία!

Με συναδελφικούς χαιρετισμούς,

Χρήστος Τσατσανίδος
ABSTRACT Passive stabilization is a new ground improvement technique against liquefaction. It consists of the low pressure injection of colloidal silica in the pores of a liquefiable soil. After well-controlled time, colloidal silica becomes a firm gel and changes the mechanical properties of the soil, making it less vulnerable to strain accumulation and strength degradation related to liquefaction. The effectiveness of the technique relies greatly on the ability to inject (or permeate) the colloidal silica into the soil, well before its gelation. This paper first investigates experimentally the factors affecting the permeation of colloidal silica, via 1D permeation tests in granular soil columns. Then, a simple analytical tool is proposed for estimating the (time-variable) flow rate of colloidal silica through the soil, which is based on Darcy’s law after adjustments for the differences in viscosity and density of colloidal silica as compared to that of water. The predictions with this tool agree well with the measurements of the 1D permeation tests.

RESUMÉ La stabilisation passive est une nouvelle technique d’amélioration du sol contre la liquéfaction. Elle consiste en l’injection à basse pression de silice colloïdale dans les pores d’un sol liquéfiable. Après un temps bien contrôlé, la silice colloïdale se transforme en gel ferme et modifie les propriétés mécaniques du sol, le rendant moins vulnérable à l’accumulation de déformation et à la dégradation de la résistance liée à la liquéfaction. L’efficacité de la technique dépend fortement de la capacité d’injeter (ou de faire infiltrer) la silice colloïdale dans le sol, bien avant sa gélification. Cet article examine d’abord sur le plan expérimental les facteurs qui influent sur l’infiltration de la silice colloïdale, par des essais d’infiltration 1D dans des colonnes de sol granulaire. Ensuite, un outil d’analyse simple est proposé pour estimer la vitesse d’écoulement (variable dans le temps) de silice colloïdale dans le sol, qui est basé sur la loi de Darcy, après ajustements pour les différences de viscosité et de la densité de silice colloïdale par rapport à celle de l’eau. Les prédictions avec cet outil s’accordent bien avec les mesures des essais d’infiltration 1D.

1. ON PASSIVE STABILIZATION

Passive stabilization is a new concept of ground improvement based on the low pressure injection (or permeation) of a stabilizer, named colloidal silica (CS), in the pores of a granular soil (Gallagher 2000). Colloidal silica is an aqueous dispersion of silica nanoparticles. Such dispersions have time-increasing viscosity, starting from values similar to that of water (slightly higher than 1cP) thus allowing permeation. However, the viscosity of the material increases rapidly after it reaches a value of 3 to 6cP, transforming itself into a firm gel (Gallagher & Lin 2005, Lin & Gallagher 2006). Once the CS has gelled in the pores, the soil becomes much more resistant to strain accumulation and strength degradation related to liquefaction. The time needed for the CS dispersion to firmly gel is called gel time (tₐ) and depends on pH, ion normality, temperature and the percentage per weight of colloidal silica, CS(%), in the dispersion (Agapoulaki and Papadimitriou 2015). However, the time before gelation can be used to inject the material, either by natural groundwater flow or by using boreholes as injection and extraction wells on either side of the foundation area under stabilization. Based on the above, the concept here is to use low pressures for injecting the material, i.e. not requiring special equipment or risking structural damage in the foundation.

By choosing a low pressure injection scheme, the ability of the stabilizer to permeate the granular soil becomes primarily a function of soil characteristics (e.g. permeability, porosity), as well as the rheological properties of colloidal silica (e.g. viscosity, density). Hence, the effectiveness of passive stabilization as a ground improvement method relies on the permeation potential of colloidal silica. This is investigated herein experimentally, by means of 1D permeation tests in columns of granular soil where the flow rate of the material is measured, along with its time-increasing viscosity. These tests are performed in columns with heights ranging from 20 to 100cm using different CS solutions, soil types and hydraulic gradients, and are considered complementary to similar tests conducted by: Gallagher & Lin (2005), Lin & Gallagher (2006).

2. EQUIPMENT AND MATERIALS

The 20cm column used in this research is illustrated in Fig. 1. It consists of a main section of a diameter of 10cm and a height of 20cm, a bottom cap with two valves for the separation of CS and water, a top cap for the extraction of CS with one valve and two sampling ports for stabilizer fluid extracted during a test. The bottom and upper valves are connected to three chambers: an inlet (water injection), an outlet (water and/or CS extraction) and an (inlet) CS chamber (CS injection).

Figure 1. Equipment for vertical colloidal silica permeation testing and pore fluid sampling (example for H=20cm sample).

For the preparation of the CS solution, deionized water was enriched by Ludox®-SM colloidal silica and pure NaCl, thus forming solutions whose pH was controlled by adding (small quantities) of HCl. The pH value of the solution was measured by a Metrohm, type 826 pH mobile pH meter. During
the gel time \(t_{\text{g}} \) in hours) as the time required for the vis-
emin=0.548 and D50= 0.30 mm. For the silty sand mixtures,
pendently for the desired gel time \(t_{\text{g}} \), on the basis of the
the CS injection, permeability of the sample under constant
low gradient for two days. After saturation, and just before
water-outlet chambers were retained constant throughout
the test. The volume of CS required to be added in order to
retain the selected height of the CS inlet level was used in
order to estimate the measured flow rate or discharge
\(Q_{\text{meas}} \) of colloidal silica within the soil sample. Concurrent-
ly, the time evolution of the (dynamic) viscosity of the CS
solution was measured independently, and so was the loca-
tion of the CS front within the sample. This was performed
by optically observing where the dyed CS material lies with-
in the sample, as shown in Fig. 2. Obviously, this type of
optical measurement is less accurate than the measure-
ments of flow rate; however sampling of the pore fluid
through the ports (see Fig. 1) ascertains that the dyed pore
fluid is the intended CS solution.

This paper presents the characteristics and the results of
four (4) tests outlined in Table 1. More specifically, Table 1
contains the number of the tests, the CS properties (pH
value and ion normality, since CS = 10% in all tests), the
height of the column \(H \) in cm), the hydraulic gradient \(i \),
the dynamic viscosity, \(\mu_d \), change (increasing or constant),
the gel time \(t_{\text{g}} \) in hours) as the time required for the vis-
cosity to reach a value of 4–6cP which essentially disallows
flow), the permeability \(k \) of the sand (for clean water) and
its void ratio \(e \).

The soil used in these studies is M31 sand with maximum
and minimum densities \(\rho_{\text{max}} = 1.717 \text{ g/cm}^3 \) and \(\rho_{\text{min}} = 1.455 \text{ g/cm}^3 \), maximum and minimum void ratios \(e_{\text{max}} = 0.826 \) and \(e_{\text{min}} = 0.548 \) and \(D_50 = 0.30 \text{ mm.} \) For the silty sand mixtures,
D6 silt has been used with \(D_50 = 0.05 \text{ mm.} \)

3. COLUMN PREPARATION AND TESTING

For the preparation of sand and silty sand columns, the
equipment was assembled as it is shown in Fig. 1. For the uniform permeation of pore fluid, a 5cm-thick layer of
coaarser soil (gravel) was placed at the bottom part of the
sand column within the (5cm-thick) end part with 2 inlet
valves (see Fig. 1). Beyond this layer, the sand was placed
with the undercompaction method (Ladd 1978). In order to
form higher columns, 20cm-tall main bodies are assembled
one on top of the other, while at the very top another 5cm-
 thick coarser soil layer is placed within the (5cm-thick) end
part with 1 inlet valve (Fig. 1). After the preparation of the columns, saturation is achieved
by running deionized water through the system at a very
low gradient for two days. After saturation, and just before
the CS injection, permeability of the sample under constant
head was measured. The CS solution was prepared inde-
dependently for the desired gel time \(t_{\text{g}} \) on the basis of the
injection it was colored with blue food dye in order to be
visible inside the sample.

The goal of the experiments was to perform 1D vertical up-
ward injection of CS using low hydraulic gradients. It has to
be underlined here that due to the slightly higher density of
the injected CS in comparison to that of water (pre-existing
in the pores), if the CS-inlet and water-outlet levels are set
at exactly the same height, then density-driven flow of CS
through the sample occurs (see Post et al. 2007). If these
levels are kept constant, then this density-driven flow will
continue at a constantly reducing rate. Hence, in order to
establish equilibrium (or no flow conditions) as the initial
condition of the experiment, the CS-inlet level was initially
set appropriately slightly lower than that of the water-outlet
level (see illustration in Fig.6). Then, the CS-inlet level was
increased slightly in order to apply a low hydraulic gradient \(i \) and thereafter the selected levels of the CS-inlet and
the water-outlet chambers were retained constant throughout
the test. The volume of CS required to be added in order to
retain the selected height of the CS inlet level was used in
order to estimate the measured flow rate or discharge
\(Q_{\text{meas}} \) of colloidal silica within the soil sample. Concurrent-
ly, the time evolution of the (dynamic) viscosity of the CS
solution was measured independently, and so was the loca-
tion of the CS front within the sample. This was performed
by optically observing where the dyed CS material lies with-
in the sample, as shown in Fig. 2. Obviously, this type of
optical measurement is less accurate than the measure-
ments of flow rate; however sampling of the pore fluid
through the ports (see Fig. 1) ascertains that the dyed pore
fluid is the intended CS solution.

The time-evolution of measured flow rate \(Q_{\text{meas}} \) and dynamic
viscosity \(\mu_d \) of colloidal silica in Tests 4, 6, 8 and 9 are pre-
seated in Figs 3 through 5. The details of these figures will
be discussed later. Of interest here is to underline that in
Tests No 4, 6 and 8 the CS permeation stopped (the front
was stable for a long time) far before anticipated and de-
spite that the levels of water-outlet and CS-inlet were kept
constant at their initial heights. This can be explained by
the fact that the independent dynamic viscosity measure-
ments showed that the \(\mu_d \) value at that time was some-
where between 4 and 7cP. In other words, these tests show
that the CS solution had become practically "too viscous" to
continue permeation through the soil at such relatively low
hydraulic gradients (\(i = 0.05 \) and 0.25). This result is in line
with the literature (Gallagher & Lin 2005, Lin & Gallagher
2006), which considers permeation to be completed when
viscosity of CS reaches a value of 3.6 – 4.0cP but for even
lower hydraulic gradients.

On the other hand, test No. 9 shows a qualitatively similarly
decreasing flow rate with time, but this is attributed to the
density-driven upward flow whose discharge (or flow rate)
is expected to decrease as the CS front increases through
the soil (Post et al. 2007). This assertion is justified given
the fact that the CS solution was tailored to retain its initial
viscosity constant throughout this test.

In more detail, Fig. 3 studies the effect of different hydrau-
lic gradients \(i \) on the measured flow rate of CS through
sand. Observe that the effect of \(i \) is especially important in
the initial stages of the permeation (much higher flow rate

<table>
<thead>
<tr>
<th>Test No.</th>
<th>CS(^{-1})</th>
<th>(H) (cm)</th>
<th>(i)</th>
<th>(\mu_d) (cP)</th>
<th>(t_{\text{g}}) (h)</th>
<th>(e) (\times 10^4) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pH=5.53</td>
<td>20</td>
<td>0.05</td>
<td>1</td>
<td>3.4</td>
<td>2.84</td>
</tr>
<tr>
<td>6</td>
<td>pH=7.00</td>
<td>40</td>
<td>0.05</td>
<td>1</td>
<td>7.4</td>
<td>3.40</td>
</tr>
<tr>
<td>8</td>
<td>pH=5.50</td>
<td>100</td>
<td>0.25</td>
<td>1</td>
<td>4.5</td>
<td>3.10</td>
</tr>
<tr>
<td>9</td>
<td>pH=10.0</td>
<td>20</td>
<td>0.05</td>
<td>C</td>
<td>-</td>
<td>2.84</td>
</tr>
</tbody>
</table>

\(^{1}\text{CS=(10%) properties; } ^{2}\text{ type: Increasing or Constant} \)
for a much larger hydraulic gradient, as expected qualitatively by Darcy’s law). Nevertheless, in both tests the flow rate decreases asymptotically with time, as a combined effect of the increase of viscosity and density-driven flow. Note also that the flow rate remains much higher in Test No 8 throughout the test (due to the higher i value), but permeation essentially stops when μ_g reaches 5-7cP.

In an attempt to disassociate the two flow rate reducing effects, Fig. 4 compares data from Tests No. 4 (also in Fig. 3) and 9. As discussed above, the latter test had a CS with viscosity tailored to remain constantly equal to 1.47cP (its initial value). Observe here that the initial flow rates are practically identical (due to identical values of i and μ_g), but the flow rate of Test No. 4 with the increasing viscosity decreases faster and essentially stops after 3.4hrs when $\mu_g = 7cP$. On the other hand, Test No 9 shows that permeation continues further (well after 5hrs), but at a much reduced flow rate. Finally, Fig. 5 studies the effect of different (but finite) gel times on the measured flow rate, under otherwise similar hydraulic conditions. Observe that while the initial flow rates are practically identical (due to identical values of i and μ_g), the flow rate reduces much faster with time when the increase of viscosity is faster. Also note that the permeation essentially reduces to zero when μ_g reaches 4-7cP, although these instances appear at distinctly different times (3.4 and 7.4 hrs) in the two tests.

4. ANALYTICAL SIMULATION OF THE 1-D COLLOIDAL SILICA PERMEATION TESTS

4.1 Conceptual and mathematical formulation

As the CS solution is delivered from the inlet chamber, it moves upwards within the soil column displacing pore water. As shown schematically in Fig. 6, over time the CS occupies a region of the soil column with height equal to L_g; this region is defined by the bottom layer of the test column and the front of the CS solution. In this region, pore space is filled with the stabilizer solution, which is heavier (stabilizer density, $\rho_g > 1000$ kg/m3) and more viscous than water (stabilizer viscosity, $\mu_g > 1.0cP$ at the beginning of the injection) for usual CS percentages (e.g. $\rho_g \equiv 1050$kg/m3, $\mu_g \geq 1.25cP$ for CS = 10%). In other words, the injection of a CS solution into a saturated porous medium constitutes a flow problem under viscosity and density varying conditions.
In many mainstream numerical codes (e.g. MOCDENSE, SEAWAT) variable-density flow is assessed with the concept of equivalent fresh water heads. According to this concept, every measured hydraulic head is expressed in terms of an equivalent fresh water hydraulic head \(h_{f,i} \) according to:

\[
h_{f,i} = z_i + \frac{P_i}{\frac{\rho_w}{g}}\]

where \(z_i \) is the elevation head (m), \(P_i \) is fluid pressure (Pa), \(\rho_w \) is fresh water density (kg/m\(^3\)) and \(g \) is the gravitational acceleration (m/s\(^2\)). However, the concept of equivalent fresh water heads may produce erroneous flow rate estimates, especially in cases of vertical flow (Simmons 2005). Fresh water head analyses can misinterpret water flow calculations, if density variations are not properly taken into account (Post et al. 2007). To avoid such misinterpretations, Post et al. (2007) suggest the application of the more general form of Darcy’s law for fluid flow in a porous medium:

\[
Q_{calc} = -\frac{k}{\mu} \left[\frac{\partial P}{\partial z} + \rho g \right] A
\]

where \(k \) is intrinsic permeability (m\(^2\)), \(\mu \) is fluid dynamic viscosity (kg/m/s), \(p \) is fluid density (kg/m\(^3\)) and \(A \) is the cross-sectional area to flow direction (m\(^2\)). This form of Darcy’s law explicitly demonstrates the two driving forces of flow, i.e. the pressure gradient (\(\nabla P \)) and the gravity force per unit volume (\(\rho g \)). By differentiating and rearranging Eq. (1), Eq. (2) is equivalent to the expression:

\[
Q_{calc} = -\frac{k}{\mu} \left[\frac{\partial h_f}{\partial z} + \left(\frac{\rho - \rho_s}{\rho_w} \right) g \right] A
\]

For the assessment of variable-density flow, Post et al. (2007) suggest the application of Equation (3) with an average fluid density that is given by:

\[
\rho_a = \frac{1}{z_2 - z_1} \int_{z_1}^{z_2} \rho dz
\]

In the case of colloidal silica flow, the spatial variation of viscosity cannot be neglected. Hence, the calculation of an average viscosity term is required:

\[
\mu_a = \frac{1}{z_2 - z_1} \int_{z_1}^{z_2} \mu dz
\]

According to the spatial distributions of density and viscosity depicted in Fig. 6, the average rheological properties described in Eqs (4) and (5) are given by:

\[
\rho_a = \frac{(\rho_g L_g + \rho_s L_s)}{L}
\]

\[
\mu_a = \frac{(\mu_g L_g + \mu_s L_s)}{L}
\]

Note that these average quantities are a function of time, since \(L_s \) increases over time. Furthermore, \(\mu_a \) is dependent on \(\mu_w \) which also increases over time due to the gelling process that the stabilizer undergoes. Finally, if one substitutes Eqs (6) and (7) into Eq. (3), the flow rate can be estimated by the following analytical equation:

\[
Q_{calc} = \frac{k \rho_a g}{\left(\frac{\mu_g L_g + \mu_s L_w}{\rho_w} \right)} \times \left[\left(\frac{\rho_g}{\rho_w} (h_1 - h_2) \right) - \left(\frac{\rho_g}{\rho_w} - 1 \right) L_s \right] A
\]

where \(h_1 \) and \(h_2 \) are the measured hydraulic heads corresponding to the inlet and the outlet chambers of the test, respectively (see Fig. 6). In order to test the predictive abilities of Eq. (8), in the following section its predictions are compared with the corresponding test data.

4.2 Analytical predictions versus test results

Due to length limitations, the analytical predictions of only two of the tests are compared herein with the data (in Fig. 7). Apart from the stabilizer density, the viscosity of colloidal silica and the position of its front (i.e. the height of the treated region, \(L_s \)) are experimentally measured over time.

As shown in Fig. 7, the analytical solution developed by Post et al. (2007) as modified herein reproduces satisfactorily the pattern of flow rates decreasing with time. This reduction results from (a) the increase of the height of the colloidal silica front, and (b) the increase of the stabilizer viscosity. The discrepancy between calculated and measured flow rates may be attributed to the inherently noisy measurements of the stabilizer viscosity, but mostly to the difficulty in accurately determining the height of the treated region (see Fig. 2).

![Figure 7. Measured and calculated flow rates versus time for (a) Test 4 and (b) Test 8.](image)

5. CONCLUSIONS

From both the experimental and analytical study of colloidal silica (CS) permeation potential, the following conclusions can be drawn:

1. The CS solution needs to be tailored to the required gel time \(t_g \) in order to permeate the required distances, since viscosity values of \(4–7 \text{cP} \) essentially stop permeation (for \(i = 0.05 \) to 0.25).

2. The CS flow rate is affected by both the time-increasing viscosity and the higher density of this material in comparison to that of water.

3. The CS flow rate may be satisfactorily simulated via a simple analytical tool, which is based on Darcy’s law after appropriate adjustments for the differences in viscosity and density of colloidal silica as compared to that of water.
ACKNOWLEDGEMENT

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

REFERENCES

Rheological properties of colloidal silica as a means for designing passive stabilization of liquefiable soils

Propréties rhéologiques de silice colloïdale comme un moyen pour le calcul de stabilisation passive des sols liquéifiables

G.I. Agapoulaki, A.G. Papadimitriou

ABSTRACT Passive stabilization is a novel ground improvement technique for mitigating liquefaction at developed sites. It is based on the low-gradient (low pressure) injection in the soil pores of colloidal silica, an aqueous dispersion of fine silica particles. This material retains low viscosity values (slightly higher than that of water) up until a well-controlled time, when its viscosity increases rapidly and turns into a gel. When this gel forms in the soil pores, the soil is no longer susceptible to large shear strains and strength degradation related to liquefaction. The (gel) time required for the gelation of colloidal silica is a very important factor for its effective injection at the desired location. It is found to depend on different yet controllable factors such as the pH, ion concentration, ionic strength, percentage per weight of colloidal silica, and temperature of the solution. This paper investigates the rheological properties of colloidal silica and quantifies these effects on the gel time as a means for designing this novel ground improvement technique for practical applications.

RÉSUMÉ Stabilisation passive est une nouvelle technique d’amélioration de sol contre la liquéfaction des sites développés. Elle se compose de l’injection (à basse pression) dans les pores du sol de la silice colloïdale, une dispersion aqueuse de particules fines de silice. Ce matériau conserve des valeurs de viscosité faible (légèrement supérieures à celle de l’eau) jusqu’au temps bien contrôlé, lorsque sa viscosité augmente rapidement et se transforme en gel. Lorsque cette gel se forme dans les pores, le sol n’est plus sensible aux grandes contraintes et à la dégradation de la résistance liée à la liquéfaction. Le temps (de gel) nécessaire à la gélification de la silice colloïdale est un facteur très important pour l’injection effective à l’endroit désiré. On trouve que ça dépend à différents facteurs qui peuvent être contrôlés, comme le pH, la concentration ionique, la force ionique, le pourcentage par poids de silice colloïdale et la température de la dispersion aqueuse. Cet article étudie les propriétés rhéologiques de la silice colloïdale, et quantifie ces effets sur le temps de gel comme un moyen pour le calcul de cette nouvelle technique d’amélioration des sols pour des applications pratiques.

1. PASSIVE STABILIZATION

Conventional liquefaction mitigation techniques are either difficult or impossible (e.g. vibro-replacement) to implement at developed sites. In such cases, underpinning, high viscosity/pressure grouting or perforated drains are often prescribed. However, these techniques cannot mitigate liquefaction under the whole structure and may create structural problems (e.g. footing heave in high viscosity/pressure grouting). In addition, the improvement of large areas is costly and may affect the normal operation of the structure. An alternative technique that avoids these drawbacks is passive stabilization (Gallagher 2000), i.e. the low pressure injection into the soil pores of colloidal silica, i.e. an aqueous dispersion of fine silica particles. This stabilizing material retains low viscosity values (slightly higher than that of water), thus allowing its low pressure injection (or permeation) which cannot induce structural problems. In situ, this can be performed either by natural ground flow or by using injection and extraction wells (filled boreholes with different hydraulic heads) on either side of the developed site (see concept in Figure 1).

After well-controlled time, the colloidal silica gels in the pores of the soil and alters the mechanical response of the soil skeleton–pore fluid system, making it less vulnerable to reduction of shear strength and plastic strain accumulation related to liquefaction. Significant data quantifying such effects were first presented by Gallagher and Mitchell (2002), whereas an overview of pertinent literature data may be found in Papadimitriou and Agapoulaki (2013). Possibly the most crucial factor for the successful application of passive stabilization is controlling the gel time (\(t_g\)) of the pore fluid. Given the low injection pressures used, if colloidal silica gels prematurely, then the stabilizer will not be able to reach the desired location, whereas if it does not gel in time the stabilizer will overtake the desired location. Hence, quality control of \(t_g\) is fundamental for making passive stabilization usable in civil engineering practice. This paper complements existing knowledge for the rheological properties of colloidal silica, and proposes design charts for its use in liquefaction mitigation.

2. COLLOIDAL SILICA

Colloidal silica (CS) is an aqueous dispersion of silica nanoparticles. It is biologically and chemically inert, non-toxic and is considered durable (stability of at least 25 years; Whang 1995). Its cost is comparable to conventional chemical grouts. Due to the small size of the silica particles and their negatively-charged surface, electro-static forces control the response of the dispersion. Stabilization is due to gelation, which occurs by the formation of siloxane (Si-O-Si) bonds between silica particles, releasing H2O into the solution. The procedure of gelation is perpetual, and the time required for its formation (gel time; \(t_g\)) depends on the electro-static interaction between the particles. Hence, it may be controlled by the factors affecting the electro-static forces between silica particles, similarly to how such factors affect the interaction between negatively-charged clay particles. For example, the introduction of NaCl in the silica dispersion reduces the double layer of water attached to the silica particles that is created by the electrostatic attraction of bipolar H2O molecules. As a result, the repulsive forces between silica particles are reduced, thus accelerating the formation of siloxane bonds, which is macroscopically measured by an increase in the viscosity (\(\mu\)) of the solution. Hence, the viscosity (\(\mu\)) versus time (\(t\)) relation and the time \(t_g\) required for formation of a firm resonating gel are governed by the interplay affecting the electro-static forces. Thus, for a given type of colloidal silica, they may be controlled by various factors, the most important of which are the percent per weight of silica CS (%), the pH, the normality of ions in the solution and its temperature (Gallagher 2000).

3. RHEOLOGICAL TESTING RESULTS

Related literature includes measurements of viscosity and gel time of various types of colloidal silica. In particular, Gallagher (2000) showed that the finer the silica particles, the lower the \(t_g\) value for given conditions and the smaller the required quantity of silica for achieving gelation. Given the breadth of the literature measurements, it is required that testing focuses on quantifying the various effects on a
specific type of silica. The measurements presented here were performed at the Laboratory of Geotechnical Engineering at the University of Thessaly (UTH) in Greece, and focused on Ludox®-SM, one of the finest types of colloidal silica (mean diameter of 7nm).

3.1 Equipment and methodology

In order to investigate all the basic parameters that affect gel time as well as the curves of (µ vs. t) of colloidal silica, a large set of viscosity measurements were performed with a Brookfield LVV-III+PX rotational viscometer (equipped with a UL adapter for measuring very low viscosities) and a Brookfield TC-150 water bath for retaining constant temperature. Preparation of colloidal silica solutions was performed by enriching deionized water with Ludox®-SM colloidal silica and pure NaCl, thus forming solutions whose pH was controlled by adding (small quantities) of highly concentrated HCl. Table 1 presents an overview of the variation of these parameters in the performed tests at UTH.

<table>
<thead>
<tr>
<th>CS(%)</th>
<th>NaCl concentration (normality, N)</th>
<th>pH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>3.00 - 5.55</td>
</tr>
<tr>
<td>5</td>
<td>0.03N</td>
<td>3.00 - 6.00</td>
</tr>
<tr>
<td>5</td>
<td>0.1N</td>
<td>4.00 - 7.50</td>
</tr>
<tr>
<td>7.5</td>
<td>0</td>
<td>3.00 - 6.55</td>
</tr>
<tr>
<td>7.5</td>
<td>0.03N</td>
<td>5.00 - 6.50</td>
</tr>
<tr>
<td>7.5</td>
<td>0.1N</td>
<td>5.00 - 7.30</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>2.80 - 6.88</td>
</tr>
<tr>
<td>10</td>
<td>0.03N</td>
<td>3.00 - 7.55</td>
</tr>
<tr>
<td>10</td>
<td>0.1N</td>
<td>3.80 - 7.50</td>
</tr>
</tbody>
</table>

3.2 Typical viscosity vs time response

Figure 2 presents an overview of the viscosity versus time curves for a number of colloidal silica solutions having CS = 10%, no added salt (NS), but quite different pH values (ranging from 3.00 to 6.88). Observe that for all tested pH values the viscosity values remain initially very low (somewhat higher than that of water) and abruptly viscosity increases rapidly to values reaching a few thousands cP (not shown here for clarity). This rapid increase of viscosity turns the solution quickly into a firm resonating gel, offering stabilization to a liquefiable soil if this solution has been permeated into its pores.

While all these colloidal silica solutions have the foregoing similarities in their rheological response, they differ significantly in the time required to reach this firm gel state. There is no strict definition of gel time (t_g) in the literature. Here, the (t_g) is defined when the last measured viscosity value is greater or equal to 100cP, since the time after t_g required to reach a state of firm gel is comparatively negligible.

Given this practical definition of t_g (which is in tune with the literature, e.g. Gallagher 2000), observe in Fig. 2 that the initial stage of very low viscosity values usually runs up until 0.8t_g - 0.9t_g, whereas in the remaining time of 0.1t_g - 0.2t_g the viscosity increases very rapidly. This type of response was found to apply in all tested (CS, N) combinations of Table 1. Furthermore, observe in Fig. 2 that although all solutions have CS = 10% and no added salt (NS), the values of t_g range from less than 1 day up to more than 12 days, as a result of the different pH, the effect of which is studied in the next section.

3.3 Effect of pH

Based on Fig.2, the effect of pH on t_g is very important. This becomes clearer in Fig. 3, which presents the values of t_g as a function of pH for the tests in Fig. 2. Observe in Fig. 3 the good agreement with t_g values from the literature and that our tests are complementary to those already published. Furthermore, our tests depict that the "gel time curve" (the curve of pH vs. t_g) has the shape of a (somewhat symmetric) inverted bell, and this was found to hold true for all (CS, N) combinations outlined in Table 1.

Given these observations, for each (CS, N) combination there is an "optimum" pH value (pHopt), which corresponds to a minimum gel time (t_gmin). This typical response for all (CS, N) combinations has been explained in the literature (e.g. Gallagher 2000). Specifically, when pH < pHopt the hydroxyl ions which create the negative charge of the silica particles become uncharged and therefore gelation is delayed. On the contrary, when pH > pHopt the hydroxyl ions are too many and thus repulsive forces are created between silica particles, again delaying gelation.

Figure 3. Typical effect of pH on gel time ("gel time curve") for colloidal silica solutions (CS=10%, no added salt, pH = 2.80 – 6.88) and comparison to literature data.
3.4 Effects of CS (%) and ion normality

Another important parameter controlling gel time is CS concentration. This value is also related to the cost of passive stabilization. Tests from the literature show that concentrations between 5% and 10% suffice for mitigation liquefaction in practical applications (Gallagher and Mitchell 2002), and this is what dictated the range of CS (%) values here (Table 1).

![Image of viscosity vs time curves for different CS concentrations](image)

Figure 4. Effect of CS(%) on the viscosity vs time curve of colloidal silica solutions (pH = 6.00, 0.03N)

Figure 4 shows the viscosity vs time curves in solutions with different CS (%) concentrations and pH = 6.00 & 0.03N. It is clear that the typical response identified in Fig. 2 applies in all these tests, and that there is a considerable monotonically decreasing effect of CS (%) on gel time. Observe that 2-fold increase of CS (%) from 5 to 10% can lead to a 5-fold decrease of gel time. From a physical point of view, this decreasing effect of CS (%) is expectable, since more silica particles mean much more siloxane bonds and thus much quicker gelation.

Ion normality in general (or NaCl concentration in our tests) also affects gel time, as explained in Section 2. To study this effect, Figure 5 shows how NaCl concentration (quantified in terms of normality N) affects the gel time for three (3) different CS concentrations. Observe that for CS = 5% an increase of NaCl concentration from 0.03N to 0.1N causes a decrease of gel time from 5 to 1.4 days, while the corresponding decrease of gel times for CS = 10% is much smaller (at the same pH value for comparison. In other words, NaCl concentration is important, especially for low values of CS (%). Note that higher values of NaCl concentration are physically possible, but would not be used in practice since they would lead to very small gel times (in the order of hours, for the CS values of interest).

3.5 Effect of temperature

The temperature of the colloidal silica solution also plays an important role in its gelation process. For example, there is evidence that a two-fold increase of gel time may occur for a decrease of 10o C (e.g. Otterstedt and Greenwood 2005), but whether this strong effect applies in all (CS, N, pH) combinations and colloidal silica types is yet to be investigated.

For this purpose, a number of viscosity measurements outlined in Table 1 was repeated for different temperatures in order to quantify this effect for the Ludox®-SM colloidal silica. In order to retain the temperature of the tested solutions constant, they were constantly kept within the tub of the Brookfield TC-150 water bath. Figure 6 shows an example of the "gel time curves" for CS = 10%, NaCl ion concentration of 0.1N at three (3) different temperatures T=15, 20, 25o C and three distinct values of pH ranging from 5.0 to 7.0.

![Image of effect of temperature on gel time](image)

Figure 6. Effect of temperature on gel time for CS=10%, with NaCl concentration equal to 0.1N at different pH values

Our data corroborate the decreasing effect of temperature on t_g. As the temperature increases the gel time becomes significantly smaller. It is remarkable that the tested decrease of the temperature from T = 25o C to T = 15o C leads to an approximate 2.5 times increase of gel time for almost every pH value tested. Similar processing of the data shows that for all tested (CS, N) combinations the "gel time curve" retains the same shape of a (somewhat symmetric) inverted bell, which is shifted upwards by 2.5 times approximately in terms of t_g with a decrease of T by 10o C. Of importance is also the fact that despite the change in the
actual values of \(t_g \), the value of \(pH_{opt} \) remains essentially unchanged, since it is found a function of \(CS \) (%) and ion normality only.

4. DESIGNING FOR GEL TIME

Based on the above, the gel time \(t_g \) of colloidal silica is very much influenced by the \((CS, N, pH, T)\) combination. Hence, the quality control for applying CS for stabilization in practice. Note that \(t_g \) is essentially the required permeation time until the colloidal silica reaches the desired location (under the structure in Fig. 1). Its estimation may be performed on the basis of the geotechnical conditions at a site (as a function of permeability, distance to be travelled via injection, etc.), but this is beyond the scope of this paper. A discussion on these issues may be found in the paper of Agapoulaki et al. (2015) in this conference.

Of interest here is to aid the engineer to select the values of \((CS, N, pH, T)\) that could lead to the desired value of \(t_g \). In order to aid in this effort, this paper presents a set of design charts focusing on patterns of rheological response that seem to be applicable in all cases.

Hence, Figure 7 summarizes the \(tg_{min} \) values of the "gel time curves" for all \((CS, N)\) combinations of Table 1, as well as the pertinent \(pH_{opt} \) values for a temperature \(T = 25^\circ C \). Observe the intensely decreasing effect of \(CS(\%) \) on \(t_g \) (up to 8-fold decrease for a 2-fold increase from \(CS = 5\% \) to 10\%), and the less dramatic decreasing effect of normality \(N \) on \(t_g \) (up to 2.5 times decrease for 3.3 times increase from 0.03N to 0.1N). However, note that while the \(t_g \) ranges considerably (from a few hours to a few days), the \(pH_{opt} \) does not, i.e. it appears at values of \(pH \) between 4.5 and 6.0 in all the data, and based on Fig. 6 these values are not affected by temperature.

5. CONCLUSIONS

The rheological testing of a wide range of colloidal silica solutions has provided a satisfying set of data for the application of passive stabilization in practice. This paper focuses on the control of the gel time \(t_g \) of colloidal silica, which is paramount for quality control of the method. Based on the presented data:

- The main parameters that control the \(t_g \) are silica percentage per weight \(CS(\%) \), ion concentration and ion strength (in terms of normality \(N \), \(pH \) and temperature \(T \). In general, the \(CS(\%) \), \(N \) and \(T \) have a monotonically decreasing effect, while the effect of \(pH \) is not monotonic.

- The average gel time \(t_g \) may be easily controlled to range from a few hours to a few days (and even higher), according to the applied pressure injection, which at some point increases rapidly creating a firm gel (at a time of \(t_f \)).

- Based on the design tools presented herein, the gel time \(t_g \) may be easily controlled to range from a few hours to a few days (and even higher), according to the application at hand.

ACKNOWLEDGEMENT

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
REFERENCES

Numerical analysis of the seismic response of sand passively stabilized against liquefaction

Analyse numérique de la réponse sismique de sable stabilisé passivement contre la liquéfaction

K.I. Andrianopoulos, G.I. Agapoulaki and A.G. Papadimitriou

ABSTRACT Passive stabilization is a new technique for mitigating the risk of seismic liquefaction in the non-cohesive foundation soil of existing structures. It consists of the low pressure injection (in the soil pores) of colloidal silica, a stabilizer material which transforms into a firm gel after a well-controlled time. This gelation enhances macroscopically the mechanical response of the soil skeleton–pore fluid system. The microscopic mechanism of improvement has not yet been established, thus prohibiting the formulation of constitutive models. This paper explores the possibility of using existing constitutive models for simulating the response of stabilized sands. A well-established plasticity model for sands (NTUA-SAND) is used herein for the simulation of a pertinent dynamic centrifuge test, after recalibration or in combination with the seemingly relatively compressible colloidal silica as the pore fluid instead of incompressible water.

RÉSUMÉ La stabilisation passive est une nouvelle technique pour atténuer le risque de liquéfaction sismique dans le sol de fondation des structures existantes. Elle consiste en l’injection (dans les pores du sol) à basse pression de la silice colloïdale, un matériau stabilisateur qui se transforme en gel ferme après un temps bien contrôlé. Cette gélification améliore de façon macroscopique la réponse du sol, mais le mécanisme microscopique de l’amélioration n’a pas encore été établi, interdisant ainsi la formulation de modèles de comportement. Cet article explore la possibilité d’utiliser des modèles de comportement existants pour simuler la réponse des sables stabilisés. Un modèle de plasticité pour les sables (NTUA-SAND) bien établie est utilisé ici pour la simulation d’un essai dynamique en centrifugeuse pertinente, après recalibrage, ou en combinaison avec de la silice colloïdale compressible comme le liquide des pores à la place de l’eau incompressible.

1. INTRODUCTION

Passive stabilization (Gallagher 2000) poses as one very promising liquefaction mitigation technique for developed sites. It entails the low-pressure injection of a stabilizer (colloidal silica) in the soil pores, which transforms into a firm gel after well-controlled time. This change alters the mechanical response of the thus stabilized sand, making it less vulnerable to plastic strain accumulation and strength degradation related to liquefaction or cyclic mobility.

This ground improvement technique is currently still at an experimental stage worldwide. One important issue that needs to be addressed before it becomes practically usable is how to control the colloidal silica properties in order to permeate it effectively at the desired distance within a given soil (see also Agapoulaki and Papadimitriou 2015, Agapoulaki et al. 2015, both in this conference).

Another similarly significant issue is to establish the microscopic mechanism of improvement, as the first step for the formulation of constitutive models for this new geomaterial named stabilized sand. Since this is not yet established, this paper explores the potential of using existing constitutive models for sands for the task at hand by appropriately adjusting different aspects of the simulation components.

2. MECHANICAL RESPONSE OF STABILIZED SANDS

The mechanical response of stabilized sands has been studied only macroscopically, via: a) in situ testing (Gallagher et al 2007a), b) few physical modeling attempts (centrifuge modeling: e.g. Gallagher et al. 2007b), and c) a number of laboratory efforts outlined below. Yet, each of these laboratory efforts has shed light to partial aspects of the response, since they have been performed on different sands by employing different types of tests.

It has been shown that regardless of the microscopic mechanism, stabilization induces unconfined compression strength in stabilized sands (e.g. Persoff et al. 1999, Papadimitriou & Agapoulaki 2013).

Focusing on the dynamic response at small cyclic strains, published data show that stabilization with colloidal silica leads to a small increase in the elastic shear modulus G_{max} of 125% on average (e.g. Papadimitriou & Agapoulaki 2013, Spencer et al. 2008). On the contrary, at medium cyclic strains, published data (Spencer et al. 2008) show no substantial effect on the normalized shear modulus G_{max} degradation (Fig. 1a) and hysteretic damping D increase curves (Fig. 1c) with cyclic shear strain.

However, at large cyclic strains, element tests reveal a much more stable behavior for treated samples as compared to their untreated counterparts. In particular, cyclic (triaxial, simple shear) tests depict liquefaction, denoted by double amplitude cyclic shear strain DA exceeding a preset level (e.g. of 1%, 2% or 5%), after a much increased number of cycles, as compared to the natural sand under the same conditions (e.g. Gallagher and Mitchell 2002, Diaz Rodriguez et al. 2008). For example, Fig. 2 shows the significant increase of liquefaction resistance quantified in terms of the cyclic stress ratio ($CSR = \tau/\sigma''_w$) for a given number of cycles to liquefaction N_L due to stabilization (treatment) on the basis of cyclic simple shear tests (data from Diaz-Rodriguez et al., 2008). Observe that the increase of liquefaction resistance in terms of CSR for any given number of cycles N is typically in the order of $0.08 - 0.13$ (as in these tests, processed for $N_L = 5, 10$ and 15).

Note, that similar test data in the literature have reported a minimum effect of 0.01 (on the basis of these tests) and a maximum of 0.2 (Kodaka et al. 2005).

3. NUMERICAL SIMULATION

For the numerical simulation of the seismic response of stabilized sand, two (2) different approaches are examined:

a) recalibrating an existing elasto-plastic formulation for the sand (skeleton), and

b) modifying the properties of the pore fluid

3.1.1 Recalibrating an existing constitutive law

Regarding the first approach, if one disregards the fact that the stabilized sand exhibits non-zero unconfined compression strength, constitutive simulations may be potentially attained by employing existing constitutive models for sands. For this purpose, this paper adopts a bounding surface plasticity critical state model (NTUA-SAND; Andrianopoulos et al. 2010), which has been successfully implemented in FLAC and is readily available for potential users in: http://www.itasca-udm.com/pages/NTUA.html.

The attribute of this model that makes it appealing for the simulation of stabilized sand is the adoption of a Ramberg-Osgood type formulation of the “elastic” moduli, which governs the response under small to medium cyclic shear strains. In this sense, one may re-calibrate the plastic modulus (i.e. the ho model constant that serves as a scalar multiplier of the plastic modulus) to efficiently simulate the significant effect of stabilization at large cyclic shear strain levels (e.g. see liquefaction element tests on Fig. 2), without significantly affecting the predicted response at small and medium cyclic shear strains where stabilization plays a less important role.
A ten-fold increase of the plastic modulus as an upper-value is adopted here to simulate the effect of passive stabilization with colloidal silica, i.e. by altering the initial value of h_o from 15,000 (representing "untreated" sand) to 150,000 (representing the "treated" sand). All other model constants retain their values (as reported in Andrianopoulos et al. 2010), which correspond to employed Nevada sand.

The same concerns were raised by Towhata (2008) who, based on results from unconfined compression tests of pure gelled colloidal silica samples, concluded that this material has significant volume compressibility in comparison to that of water (which is practically incompressible). In other words, while any tendency for volume reduction (e.g. due to seismic shaking) translates to excess pore pressure development in untreated sand, in treated (stabilized) sand any similar loading is not expected to generate (significant) excess pore pressures.

Having in mind this observation, numerical analyses were also conducted by reducing the bulk modulus of the pore fluid at various values, with K_w denoting the bulk modulus of water. The model constants of NTUA-SAND in these analyses retain the values corresponding to untreated Nevada sand.

3.1.3 Comparison with laboratory results

Numerical simulations were performed to compare the effect of the two approaches on the simulation of laboratory tests. Regarding the small strain modulus G_{max}, the results (not shown here for reasons of brevity) depict that by introducing a ten-fold increase of the plastic modulus h_o, an increase of G_{max} by 15% to 22% is predicted, in good agreement with experimental data (e.g. Spencer et al. 2008). However, even if one adopts as pore fluid modulus a
value 50 times smaller than that of water ($K_w/50$) no similar effect on G_{max} is found.

Figure 1 emphasizes on the normalized shear modulus G/G_{max} degradation and hysteretic damping D increase curves with cyclic shear strain level. It compares simulations for "untreated" sand ($h_0 = 15,000$) and "treated" sand ($h_0 = 150,000$) in subplots b and d, and compares them to the resonant column data of Spencer et al. (2008) in subplots a) and (c), respectively. Observe that similarly to the test data, no effect of stabilization is observed in the predicted response for small and medium cyclic strains. Similar behavior is observed when modifying the pore fluid modulus to a value of $K_w/50$.

Figure 2 compares the relative increase in the cyclic stress ratios CSR required for liquefaction attained at given numbers of load cycles ($N_c = 5, 10$ and 15) from the tests of Diaz-Rodriguez et al. (2008), to the predicted pertinent values for "untreated" ($h_0 = 15,000$) and according to the first approach "treated" sand ($h_0 = 150,000$). Similarly to the relevant data, significant increase of the cyclic resistance is observed resulting from the ten-fold increase of the plastic modulus. Note that significant increase of the cyclic resistance is also predicted when modifying the pore fluid modulus to $K_w/50$, although its effect is less pronounced than that of the first approach.

3.1.4 Comparison with centrifuge tests

This section explores the potential of both approaches to simulate a boundary value problem involving stabilized ground. For this purpose, a dynamic centrifuge test is selected (Gallagher et al. 2007b) that refers to the 1D dynamic response of a uniform sand layer under sinusoidal motion. The test replicates the 1D test performed during the VELACS project using loose Nevada sand ($D_r = 40\%$), with the difference being that the Nevada sand in this test is treated with colloidal silica grout with $CS = 6\%$ by weight. In prototype scale, the experiment refers to 10m deep layer and is excited by 20 cycles of a 2Hz sinusoidal horizontal input, with uniform peak base acceleration of 0.2g. The simulation is performed with NTUA-SAND model (Andrianopoulos et al. 2010), since:

a) it has been thoroughly calibrated on Nevada sand data, the sand used herein as well, and

b) 1D shaking of an untreated horizontal sand layer of Nevada sand has been successfully simulated with this model.

The details of the simulation are not presented here for reasons of brevity, since all requirements for accuracy (mesh density, boundary conditions, etc) of the simulation for the untreated sand layer (see Andrianopoulos et al. 2010, for details) are retained.

Before proceeding to comparing data to simulations, note that in comparison to the original experiment for the untreated sand, the treated sand did not liquefy during shaking (Gallagher et al. 2007b). Moreover, the treated sand did not depict deamplification of the ground motion; rather it even showed significant amplification after the 3-4 cycles, with peak accelerations reaching 0.55g (in comparison to 0.2g at the base). The measured response also included significant spikes, which are essentially the cause for the foregoing amplification.

These traits of the measured response are presented in Figure 3, which compares the acceleration time history, as recorded at 2m depth for the treated sand (gray lines), with its counterpart from various numerical simulations (black lines). Focusing on Figs 3a and 3b, note that the ten-fold increase of the plastic modulus, produces minimal benefit in predictive accuracy (e.g. the numerical analysis still depicts deamplification of the seismic motion, following liquefaction of the horizontal layer). Thus, despite that the first approach seems promising at the element level (see Figs 1 and 2), it fails to predict the system response of the stabilized sand.

Fig. 3: Comparison of acceleration time-history at a depth of 2m as measured in centrifuge test with the numerical predictions using NTUA-SAND with different values for pore fluid compressibility and under drained conditions (data from Gallagher et al. 2007b)

Regarding the second approach, the numerical simulations are compared to the measured time history of acceleration at 2m depth in Figs 3b to 3e. As expected, by decreasing the pore fluid bulk modulus, the excess pore pressures are reduced and even some amplification of the seismic motion is predicted (0.3g as compared to 0.2g at the base). However, the predicted peak acceleration remains below the measured 0.55g, while dilation spikes are not predicted even for a decrease of the pore fluid modulus by 1000 times. Additionally, the 50-fold reduction of the pore fluid modulus seems inadequate to predict the system response of the stabilized sand, despite its good performance at the element level (see Figs 1 and 2). Finally, Fig. 3f presents the numerical prediction by assuming fully drained conditions (i.e. no excess pore pressures, or zero pore fluid bulk modulus), which plots much closer to the measured data, and this approach poses as a good candidate for a phenomenological simulation.

Similar conclusions are drawn from the comparison in terms of the surface settlement of the stabilized sand layer. As shown in Figure 4, a ten-fold increase of the plastic modulus h_0 or a 50-fold decrease of the pore fluid modulus do not essentially alter the predicted value of surface settlement, which remains significantly lower than the measured one (in gray line). Hence, once more, a good performance at the element level seems inadequate for predicting the system response. Predicted settlements tend to increase by further reducing the pore fluid modulus, with the case of $K_w/500$ representing the best fit to the measured values of surface settlement. It should be underlined here, that the drained analysis seriously over-predicts the measured settlements, and is no longer considered a good candidate for a phenomenological simulation of stabilization. For this task, possibly the case of $K_w/1000$ could be considered an optimal trade-off in predictive accuracy in terms of both accelerations and settlements.
4. CONCLUSIONS

This paper explores the possibility of using existing constitutive models for simulating the response of sands stabilized with colloidal silica. Since the microscopic mechanism of improvement has not been established yet, this paper attempts a phenomenological approach to the task at hand. Based on this numerical study, the following may be concluded:

- Colloidal silica seems to affect mainly the cyclic response of sands at large cyclic strains, while its effect on the stiffness and damping values at small and medium strains is relatively small.

- Existing state-of-the-art constitutive models can simulate at least macroscopically the response of stabilized sands at the element level, by mere recalibration (e.g. increase of plastic modulus) or by introducing a small decrease to the pore fluid modulus.

- Successful simulations of element tests on stabilized sands do not necessarily guarantee successful simulations of the system response in boundary value problems involving stabilized sand.

- The compressibility of colloidal silica after gelation needs to be explored experimentally. Existing evidence shows that it is more compressible as compared to water. Hence, if it is used as a pore fluid (as in passive stabilization) it may lead to significant reductions in pore pressures, which could qualitatively explain the system response.

ACKNOWLEDGEMENT

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

REFERENCES

Seismic performance of gravity retaining walls subjected to strong excitation
Performance séismique de murs de rétention gravitationnelle soumis à une forte excitation

E. Garini, R. Zakkak, I. Anastasopoulos and G. Gazetas1

ABSTRACT Seismic earth pressures on retaining structures are evaluated in practice by the pseudo-static extension of the Coulomb method known as the Mononobe–Okabe approach, in which the inertia force on the soil wedge is included. In reality, earthquake loading is not permanent but varies with time. We examine the dynamic response of a gravity wall in a two-layered soil stratum subjected to horizontal strong seismic acceleration. The cohesionless soil layers (retained soil and underlying soil) are modelled inelastically with finite-element discretisation. Their properties are studied parametrically. As excitations we employ a number of idealised wavelets and near-fault ground motions recorded in recent earthquakes. We present results for dynamic earth pressures behind the wall, soil displacements, wall settlements and rotation, and accelerations at several points. The relative importance of sliding versus rocking is explored. Comparisons are made with the Mononobe-Okabe method.

RÉSUMÉ Les pressions séismiques de la terre qui agissent sur les murs de soutènement sont évaluées dans la pratique en utilisant l’extension pseudo statique de la méthode comme l’approche Mononobe-Okabe, dans le cadre de laquelle les forces d’inertie du sol sont incluses. Pourtant, en réalité, la charge séismique n’est pas permanente, comme c’est supposé dans l’approche pseudo statique, mais elle diffère dans le temps. Cet ouvrage examine la réponse séismique d’un mur de rétention sur un gravitationnellement dans un sol à deux strates, et soumis à de fortes accélérations horizontales de la terre. Nous employons comme excitations quelques ondulations idéalisées et plusieurs accélorogrammes enregistrés pendant de récents tremblements de terre. Le sol est composé de deux couches (la couche retenue et la couche inférieure). En plusieurs points, nous présentons les résultats quant à la pression dynamique du sol sur le mur, le déplacement du sol, la rotation du mur, et les accélérations. Une comparaison avec les résultats de la méthode Mononobe-Okabe est également effectuée.

1. INTRODUCTION

Gravity retaining walls are the type of retaining walls that rely on their weight to retain the material behind it. The weight of the wall has two roles: resisting the overturning of the wall and causing frictional sliding resistance at the base of the wall on one hand, and experiencing inertia loading on the other.

Seismic response of even the simplest retaining wall is a complicated soil-structure interaction problem. The displacements of the wall and the dynamic earth pressures depend on the response of the retained soil, the inertia of the wall itself, the foundation soil and the nature of the input motions. The Mononobe-Okabe method (1926), an extension of Coulomb’s method, is the earliest and most widely used analytical method. It gives the total active thrust acting on the wall by applying a pseudostatic inertial force on the soil wedge. The point of application of the thrust is presumed at 1/3 the height of the wall above its base. This method had been modified and simplified by Seed & Whitman (1970). Richards & Elms (1979) determined permanent (inelastic) outward displacements, and Nadim & Whitman (1983) permanent sliding and rotation using the Newmark sliding block concept. Veletsos and Younan (1994) modelled the soil as an elastic medium and obtained elastodynamic solutions. Several other studies have also appeared, among which: Al-Homoud & Whitman (1994), Wu & Prakash (1999), Gazetas et al. (2005), Huang (2005), Dakoulas & Gazetas (2008). In parallel, a significant effort was made in numerical study of seismic earth pressures in centrifuge experiments by Ortiz et al. (1983), Cai & Bathurst (1995), Zeng (1998), Madabhushi & Zeng (2007), Al Atik & Sitar (2010), and most recently by Mikola & Sitar (2013).

The scope of this paper is to shed some light into fundamental aspects of seismic response of gravity retaining walls subjected to near-fault ground shaking, with numerical analyses of a typical gravity wall.

2. MODEL GEOMETRY AND INPUT MOTIONS

A 2-D plane-strain finite element model was constructed using the ABAQUS commercial code. The discretization consists of four-noded quadrilateral, plane-strain elements. As shown in Figure 1, the model includes two identical walls, one opposite to the other, to render the model symmetrical, and hence to minimize boundary effects. In addition, for each excitation the model provides results for two directions of loading, capturing the polarity effect which might be significant for this type of asymmetric systems (Gazetas et al. 2009, Garini et al. 2011).

The wall height and width is 12 m and 8 m respectively. The geometrical limits of the model are 50 m behind each wall. In order to avoid any interaction between the two walls, they were placed at a distance of 100 m. The soil properties are: (i) for the retained soil: $p = 1.9$ Mg/m3, $E = 100$ MPa, $\varphi = 37.5^\circ$, $\psi = 7.5^\circ$ and (ii) for the foundation soil: $p = 1.7$ Mg/m3, $E = 50$ MPa, $\varphi = 35^\circ$, $\psi = 5^\circ$. The wall is made from concrete and its behavior presumed to be elastic. The soil-wall interfaces are all tensionless with potential for sliding. The coefficient of friction is: $\mu = \tan \varphi$ for the retained soil and $\mu = (2/3) \tan \varphi$ for the foundation soil. Soil behavior is described by Mohr–Coulomb constitutive law.

Horizontal and vertical viscous dashpots with free field boundaries were added to absorb the radiated energy from the P and S waves, respectively. Accelerations, applied at the base of the model (at -32 m depth), are either idealized pulses or near-fault seismic records. The latter have been influenced by forward-directivity or fling-step effects from the Kobe, Kocaeli, Lefkada and Aegion earthquakes.

In particular, two idealized wavelets are used as simple representation of near-fault pulses: a threepulse Ricker wavelet and a multi-pulse Tsang wavelet. The near-fault accelerograms are: the Takatori (Kobe 1995), Sakarya (Kocaeli 1999), Lefkada (Lefkada 2003) and Aegion (Aegion 1995). The peak acceleration of each record was normalized from 0.1g to 1g.

3. RESULTS OF DYNAMIC ANALYSES

For the sake of brevity, only a minimum of all the parametric results are presented below. In Figure 2 the contours of plastic strain magnitudes in the soil behind the right wall are illustrated for the case of a Tsang excitation with frequency 2 Hz and PGA = 0.4 g. It is evident that a failure wedge forms in the soil behind the wall, while small plasticization is noticed beneath the outer corner of the wall base. Acceleration-time histories were investigated at three points (K, L, M) behind the wall at soil surface (Figure 3). Also shown are the accelerations at (N, O, P) in front of the wall at its base. The following conclusions are of interest:

- Next to the wall (top and base) high spiked components are included in accelerograms (see points K, N), apparently the result of slippage and wave reflections on the wall.

The surface acceleration amplitudes in the backfill free field are only 60% of the exciting peak acceleration.
(PGA)—a deamplification. By contrast in the free field in front of the wall there is an increase of PGA to 0.53 g.

- Next to the wall at the top (points K and L) an asymmetry is noted in the accelerograms: the outward acceleration, developing inward inertia, reaches 0.51 g and 0.45 g at the two points. In the other direction, the wall outward compliance, limit's the developing peak acceleration to 0.33 g and 0.28 g, at points K and L respectively. Recall the potentially-sliding interface effect (named PEPSI) shown by Gazetas & Uddin (1994).

- Figure 4 portrays the rotation time history of the wall, as well as the sliding displacement at the base and at the vertical interfaces between the wall with the retained soil. As a result at the end of the motion, the wall slid outwards 10 cm at its base and rotated just 0.36°.

Figure 1. Two-dimensional finite element mesh (in ABAQUS) of the soil-retaining wall system: geometry, dimensions and elastic modulus of soil are presented.

Figure 2. Plastic strain contours due to a Tsang wavelet of 2 Hz frequency and peak acceleration 0.4 g.
Figure 3. Acceleration-time histories for: (a) three different points (K, L, M) behind the wall, and (b) three different points (N, O, P) at the base of the wall. The excitation of the wall-soil system is a Tsang wavelet of 2 Hz frequency and peak acceleration of 0.4 g.

Figure 4. Rotation and sliding of the wall at its base and at the vertical interface behind the wall.
Figures 5 and 6 refer to wall response to Takatori ground motion, the most harmful of those studied herein. It leads to a horizontal displacement of 2.9 m (for PGA = 1g) and differential settlement of 2.1 m. Figure 5 shows the distribution with depth of the peak earth pressures for different peak accelerations, for both right and left wall. For the left wall, earth pressures increase almost linearly with depth for all acceleration levels, but for the right wall the pressures attain an almost uniform distribution with depth — a clear evidence of the polarity effect, i.e. from the asymmetry of the record and the response as has been shown by Gazetas at al. (2009) and Garini et al. (2011).

The role of the coefficient of friction, μ, is illustrated in Figure 6. Three values are given to μ: 0.4, 0.6, and 1. As can be seen from Figure 6, earth pressures are smaller for the smallest friction coefficient, $\mu=0.4$. For $\mu=0.6$ and $\mu=1$ they are higher and almost the same. The reduction of earth pressures stems from the larger horizontal displacements due to sliding for smaller μ. Moreover, a comparison with Mononobe-Okabe stresses acting on the wall is performed (dash line in Figure 6). Soil pressure distribution is overestimated by the Mononobe-Okabe mainly when the coefficient of friction is small.

Figure 5. Maximum earth pressure for different peak accelerations on the left and right wall when subjected to Takatori record.

Figure 6. Comparison of earth pressure on the retaining wall when subjected to Takatori seismic excitation with peak acceleration 0.6 g.

4. SUMMARY AND CONCLUSION

The paper studied numerically the seismic response of a typical gravity retaining wall. 2-D analyses were conducted and the response of the retaining wall was investigated for different excitations and three coefficients of friction. Asymmetry of the acceleration experienced by the wall and the soil stems from the outward displacement of the wall. Decreasing the friction coefficient, μ, leads to increased sliding of the retaining wall, increased horizontal displacements and less rotation of the wall. The seismic response of a retaining wall is sensitive to the polarity of the seismic excitation.

ACKNOWLEDGEMENT

The research of E. Garini for this paper has been financed through the ARISTEIA IKY-SIEMENS program of the State Scholarships Foundation of Greece.

REFERENCES

Al-Homoud, A. & Whitman, R. V. 1994. Comparison between the prediction and results from dynamic centrifuge

Challenges of tunnel design and construction in the GCC region

Ilias K. Michalis MSc, DIC
Senior Tunnel and Geotechnical Expert
Deutsche Bahn Engineering & Consulting

*GCC: Gulf Cooperation Council

Invited lecture to the BRIDGES & HIGHWAYS OMAN Conference / Tunnelling Focus Day, 13 September 2015, Muscat, OMAN, RET - Rail Expansion & Technology Congress MENA 2015, 15 September 2015, Dubai, UAE and Qatar Transport Infrastructure 2015 Conference, 13 October 2015, Doha, Qatar.

Outline of the presentation

- On going main tunnelling projects in the GCC countries
- Future main tunnelling projects in the GCC countries
- Tunnelling challenges and their main causes in the GCC countries
- Solutions based on design innovations and well targeted risk analyses
- Solutions fitted in the framework: “LARGE SCALE PROJECTS to be completed in a tight time framework” – Estimations of TBM advance rates
- Conclusions

On going main tunnelling Projects in the GCC countries

- Doha Metro Network - Phase 1
 1. Total length: 128 km
 2. Underground: 74 km
 3. Elevated: 25 km
 4. At Grade: 29 km
 5. No of Stations: 49
 ✓ Estimated Completion Year: 2019
 ✓ Estimated Cost: ~ 20 billion Euros

On going main tunnelling Projects in the GCC countries

- IDRIS (Inner Doha Re-sewage Implementation Strategy)
 1. 40 km of deep main trunk sewer
 2. > 70km of lateral interceptor sewers
 ✓ Estimated Completion Year: 2019
 ✓ Estimated Cost ~ 2.5 billion Euros

Future main tunnelling Projects in the GCC countries

- Riyadh Metro Project
 1. Total length = 176km
 2. No of Lines = 6
 3. No of Stations = 78
 ✓ Estimated Completion Year 2019
 ✓ Estimated Cost ~ 20 billion Euros

Future main tunnelling Projects in the GCC countries

- Doha Metro Network – Phase 2
 1. Total length: 103km
 2. Underground: 40km
 3. Elevated: 51km
 4. At Grade: 12km
 5. No of Stations: 45
 ✓ Estimated Completion Year 2026

The estimated total length of the Oman National railway network is 2135km. Most of the tunnel lengths will not exceed 4km with the exception of the tunnel underneath the Arabian Gulf near Muscat. The maximum planned speed for freight trains is 120 km/hr and for passenger trains 220 km/hr.
Tunnelling challenges and their causes

- Geotechnical & Hydrogeological conditions
- Topographical conditions & Adverse geotechnical conditions – Significant overburden heights: Possible squeezing
- Environmental conditions – Groundwater aggressiveness
- Scale of the Projects – Very demanding logistics requirements
- Time framework of the Projects

Geotechnical & Hydrogeological conditions in the GCC region

- Weak rocks (e.g. Limestone formations)
- Karstic features (Voids, Karstic depressions, sinkholes) – Weathered zones
- Swelling potential of soil & rock formations
- Significant groundwater inflows & High groundwater pressures

Groundwater aggressiveness in the GCC region

- Chloride content: between 50 – 55,000 mg/l
- Sulphate content: up to 5,500 mg/l
- Magnesium content: up to 1,000 mg/l
- Groundwater temperature: around 32°C – 35°C
- pH values: between 7 – 11

The “Mega” scale of Metro Projects in the GCC countries

- Construction Logistics:
 1. 20 -30 Mio m³ of excavation materials
 2. 3 – 5 Mio m³ of Backfill
 3. 4 – 6 Mio m³ of concrete
 4. 480,000 – 650,000 tunnel segments
- Supply and disposal logistics:
 1. Congested cities
 2. Limited space
 3. Well coordinated materials supply

The Tight Time framework of the Metro Projects in the GCC countries

- Completion time: 5 to 6 years
- Decisions for the chosen construction methodologies must be based on well elaborated risk analyses

Tunnelling Challenges in Weak Rocks (e.g. Simsima Limestone)

- Difficulty in measuring rock mass properties & assessing the design parameters
- The design values of shear strength and deformability parameters can be estimated:
 1. empirically by using rock mass classification systems and well justified mathematical formulae and / or
 2. by evaluating properly good quality in-situ test results (e.g. dilatometer tests, pressuremeter tests) and laboratory test results

Average to Significant overburden heights & Adverse geotechnical conditions – Squeezing

- Altered Conglomerates and Ophiolites in North Oman

Tunnelling Challenges in Weak Rocks (e.g. Simsima Limestone) Design geotechnical parameters

- Rock classification systems are not directly applicable in weak rocks (e.g. Simsima limestone)
- Methods commonly adopted are:
 1. The use of modified “Classification systems” & modified empirical formulae and / or
 2. Monitoring + Back Analysis
 3. Elaboration of tests results versus shear strain
Tunnelling Challenges in Weak Rocks (e.g. Simsima limestone)
Classification Systems

- **A. Structure:**
 1. Compact character and any potential fracturation
 2. Presence of inherent primary (sedimentary) discontinuities
 3. Presence and amount of vugs

- **B. Quality:**
 1. Weathered fraction in the rockmass
 2. The quality of the weathered material
 3. The participation of any other type of rock, as sedimentary intercalation (e.g. veins of marls, shales, etc. in limestone)

- **C. Groundwater conditions**

Tunnelling Challenges in Weak Rocks (e.g. Altered Ophiolites)
Classification Systems

- **Classification System for Ophiolites in Oman**
 - Consideration of various alteration degrees that downgrade significantly the geomechanical properties

Tunnelling in Weak Rocks & in Rocks with Karstic features
- **Design & Construction solutions**
 - Face instability and deformations
 - **Explorations of karstic features:**
 1. Geological mapping of surface depressions
 2. Geophysical investigations
 3. Detailed investigations of the pin-pointed geophysical anomalies
 4. Exploration ahead of the tunnel face, during TBM operations

Tunnelling in Weak Rocks & in Rocks with Karstic features
- **Design & Construction solutions**
 - Control of face instability
 - **Closed face TBM:** Ideal for face instability / deformation control
 - **NATM (conventional)**
 - Reduction of face area by splitting, side tunneling, pilot tunnel
 - Use of precasting / spiling to face
 - Installation of injection/self-draining nails at the face

Tunnelling in Rocks with Karstic features
- **Design & Construction solutions**
 - Cavity mitigation plan in place, prior to the tunnelling operations
 - Well described grouting methodologies in place, prior to the tunnelling operations

Tunnelling in Rocks with high swelling potential (e.g. Rus formation, Mudstones, Marls, altered Conglomerates & Ophiolites.)
- Swelling = Increase in volume when the Rocks come into contact with water
- Swelling occurs in Rocks containing clay minerals and / or anhydrite. Linked with the chemical composition of the Rocks
- In tunnelling: Swelling of rocks manifests itself as a heave of the tunnel floor, or as pressure on the invert arch
- Swelling pressures can take place rapidly
- In some cases, swelling processes continue several decades after tunnel completion

- **Resistant invert arch**
- **Anchoring system along the tunnel invert**
- **Open space under the road/railway plate**
Tunnelling in adverse groundwater conditions
Design & Construction solutions

- **Adverse groundwater conditions**
 1. Significant groundwater inflows (e.g. 3,000m³/hr - 5,000m³/hr)
 2. High groundwater pressures (e.g. > 4 bars)

 Solution:
 1. Combination of dewatering & grouting
 2. Closed face TBM

Tunnelling in aggressive groundwater conditions
Design & Construction solutions

- **Tunnelling challenges in “Squeezing” Rocks**
 (e.g. altered Conglomerates & Ophiolites)

 - Squeezing phenomena are related to the development of excessive “time dependent rock loads” & movements
 - Squeezing conditions depend on ratio: \(\sigma_c \text{cm} / \sigma' \text{in situ vertical stress} \). It is a yielding mechanism of hard rocks in very deep tunnelling
 - Failures of primary lining
 - Tunnel collapses

Tunnelling in “Squeezing” Rocks
Design & Construction solutions

- **Very stiff support**
- **Ring Closure close to face**
- Installation of yielding support:
 1. Yielding (Sliding) steel sets with
 2. Limiting Stress Controllers (LSC) in the shotcrete

Tunnelling in aggressive groundwater conditions
Design & Construction solutions

- **Steel fibres reinforced concrete tunnel segmental linings** can be used in cases that the linings are loaded by a combination of high compressive forces and relatively low bending moments.
- Need to derive “safe” application limits

Tunnelling Challenges – Estimates of TBM advance rates

- **Rock Mass Excavability (RME) concept.** 500 tunnel cases were analyzed to bring RME concept to fruition in assessing TBMs productivity rates
- **RME** is a measured / foreseen index, directly related to ground and groundwater conditions
- **TBMARA (m/day) = f (RME, tunnel diameter D, Contractor’s experience, Contractor’s learning period)**
Conclusions

1. On going and future large scale tunnelling projects in the GCC region are challenging
2. Existing geotechnical and hydrogeological conditions must be evaluated in detail
3. The “Mega” Scale of the Projects has demanding logistics requirements
4. Innovative tunnelling design and construction solutions must be used

5. Detailed and rather sophisticated geotechnical investigations must be performed
6. Design geotechnical parameters must be evaluated very carefully and the local experience is extremely useful
7. Closed mode TBM is preferable

8. NATM application demands the use of sophisticated excavation and retaining techniques
9. SFRC tunnel linings can be used, in the framework of their application limits

Thank you

Ilias K. Michalis for the last 3 years is continuously working with Deutsche Bahn Engineering & Consulting offering his consulting services to the Technical Department of Qatar Rail both for Doha Metro and Long Distance projects. The focus of his services is on to providing technical solutions to the significant tunneling and geotechnical design issues of the aforesaid projects. He has 20 years of experience working as tunnel and geotechnical expert in major infrastructure projects, including among others: (a) Athens and Thessaloniki Metros in Greece, (b) the 700km Egnatia Motorway in North Greece and (c) three major concession motorways in Greece of total length of 700km approximately. He is an author of more than 25 scientific publications and has delivered until now 8 invited lectures to regional (GCC) and international tunnelling and geotechnical conferences.
ΔΙΑΚΡΙΣΕΙΣ ΕΛΛΗΝΩΝ ΓΕΩΜΗΧΑΝΙΚΩΝ

Προσκεκλημένη διάλεξη Ηλία Μιχάλη σε συνέδρια σε Gulf Cooperation Council Countries

Η παρουσίαση της διάλεξής του στα συνέδρια δίνεται στις προηγούμενες σελίδες του περιοδικού.
ISSMGE Webinars

Samuel I.K Ampadu (Ghana)
December 2015
Characterizing lateritic soils

Serge Leroueil (Canada)
January 2016
Consolidation and creep

XIV Croce Lecture

Since 2000 the Italian Geotechnical Society (AGI) organises a yearly Conference dedicated to the memory of the late Professor Arrigo Croce, who was the first professor of Soil Mechanics in Italy, President of the AGI, vice-President for Europe of the ISSMFE and co-founder of the Technical Committee devoted to the Geotechnical Aspects of Preservation of Historic Sites.

Past Lectures delivered by: Prof. Carlo Viggiani, Prof. Michele Jamiołkowski, Prof. Ruggiero Jappelli, Prof. Giovanni Calabresi, Prof. Giovanni Barla, Prof. Beniamino D’Elia, Prof. Giuseppe Ricceri, Prof. Luciano Picarelli, Prof. Alberto Burghignoli, Prof. Eduardo Alonso, Prof. Renato Lancellotta, Prof. Kenichi Soga, Prof. Leonardo Cascini were printed on RIG: www.associazionegeotecnica.it/rig/croce_lecture.

We are now very happy to announce that the 2015 Lecturer will be: Prof. Sarah M. Springman, ETH Zürich, who decided to give a lecture with the very stimulating title: Lessons learnt for geotechnical engineering practice from field case histories and centrifuge modelling.

The Conference will be held on **December 11th, 2015 in Rome**, in the Conference Room of ANCE - Italian National Association of Building Contractors

All members of ISSMGE are welcome. We attach the registration form (PDF editable) that we would like you to distribute among your members.

We hope to see many of you at the Conference, to attend the interesting Lecture of Prof. Springman and have the chance of visiting Rome, a very pleasant town also in the period before Christmas.

With my best regards,

Nicola Moraci
AGI President

Associazione Geotecnica Italiana
Viale dell’Università 11
00185 Roma
Tel. 06 4465569 – 06 44704349
Fax 06 44361035
Email: agi@associazionegeotecnica.it

2015 6th International Conference Recent Advances in Geotechnical Engineering and Soil Dynamics, December 7-11, 2015, New Delhi (NCR), India, wason2009@gmail.com; wasonfeq@iitr.ernet.in, sharmamukat@gmail.com; mukutfeg@iitr.ernet.in, gvramanaiitdelhi@gmail.com, ajaycbri@gmail.com

International Symposium on Submerged Floating Tunnels and Underwater Structures (SUFTUS-2016), 20-22 April 2016, Chongqing, China, www.cmct.cn/suftus

7th In-Situ Rock Stress Symposium 2016 - An ISRM Specialised Conference, 10-12 May 2016, Tampere, Finland, www.rs2016.org

19SEAGC – 2AGSSEA Young Geotechnical Engineers Conference, 30th May 2016, Petaling Jaya, Selangor, Malaysia, seagc2016@gmail.com

19th Southeast Asian Geotechnical Conference & 2nd AGSSEA Conference Deep Excavation and Ground Improvement, 31 May - 3 June 2016, Subang Jaya, Malaysia, seacc2016@gmail.com

ISSMGE TC211 Conference Session within the framework of the 19th Southeast Asian Geotechnical Conference “GROUND IMPROVEMENT works: Recent advances in R&D, design and QC/QA”

ICONHIC 2016

1st International Conference on Natural Hazards and Infrastructure: Protection, Design, Rehabilitation
28-30 June 2016, Chania, Greece
http://iconhic2016.com

We are delighted to invite you to Chania, Greece for the “1st International Conference on Natural Hazards and Infrastructure: Protection, Design, Rehabilitation”.

With this new Conference we aim to bring under one roof specialists from the academia and industry on earthquake engineering, landslides, floods, tsunamis and hurricanes. As we have witnessed several times in recent years, our civil infrastructure is exposed to one or several of these threats and it is us, engineers, who mainly undertake the task of designing against them to minimize the risk and reduce fatalities.

This conference gives us all the opportunity to not only state our case in our own specialty but also to watch and listen how our “scientific neighbors” are coping with their fields of expertise; this is the essence of cross-fertilization of knowledge. To achieve this goal, our conference will include excellent keynote lectures, special and theme sessions as well as 5-in-5 presentations in what we hope to
be a most lively event encouraging discussion on challenging topics.

Looking forward to meeting you in Greece on 28-30 June 2016!

Professor George Gazetas, Conference Chairman

CONFERENCE THEMES

CROSS-CUTTING TOPICS

- Physical Modeling in Lab and Field: from miniature to large scale Testing
- Resilient Infrastructure Design: from structural Robustness to adaptive Systems
- Community Preparedness and Resilience to Natural Disasters
- Cascading Hazards and Multiple Risk Assessment Sensing and Monitoring: from local Instrumentation to Satellite technologies
- Case studies and lessons learned
- Eco-friendly mitigation techniques
- Engineering in harsh Environments (Offshore Challenges, Arctic Areas, Deep-Water Systems

EARTHQUAKES

- Engineering Seismology & Ground Motion Simulation
- Assessment, Analysis and Retrofitting of Structures
- Aging Infrastructure and future Earthquakes: concrete, steel and masonry Structures
- Seismic Design of Foundations and Underground Structures
- Ground Failure & Liquefaction: Analysis and effects on Structures and Lifelines
- Isolation and Energy Dissipation Devices

LANDSLIDES

- Landslides Prevention and Mitigation: Design Practice and New Concepts
- Hazard Assessment and Sensing
- Offshore Landslides and effects on submarine Structures and Pipelines
- Earthquake/Flood induced Landslides: Analysis and Modeling

FLOODS & TSUNAMIS

- Flood-resistant Design: Applications on Dams and Levees
- Tsunami-resistant Design
- Tsunami Generation – Propagation
- Flood & Tsunami Disasters: Prevention – Mitigation

TECHNICAL SESSIONS

Keynote Lectures (KS)

They will be delivered to all participants together by 2 internationally renowned experts moderated by a panel consisting of Steering Committee members. In order to cross-fertilize experience and methodologies, these sessions will have a slightly longer duration allowing for some discussion- which of course could then be continued at the end of the session.

General Sessions (GS)

These sessions will focus on specific research fields. They will be organized and moderated by 2 chairpersons and will be running in parallel sessions. Each GS will include oral presentations of papers submitted to the conference.

Special Sessions (SS)

Special Sessions will include a panel of invited speakers on cross-cutting topics and will be even organized by companies. SS could include presentation of suitable papers submitted to the conference.

5-in-5 oral presentations

During this lively session, authors will be allocated a five minutes slot to underline their research results through a five slides presentation. Presentations will run in parallel in thematic kiosks within the same hall, allowing delegates to seamlessly move from one kiosk to another during the 1-minute break between consecutive presentations. The unique format of this session will encourage interaction between delegates and authors, and give the participants the opportunity to get a flavor of subjects other than their own specialty.

Posters

Physical Poster Boards will bear poster presentations during the coffee and lunch breaks

Please send your email at secreteriat@iconhic2016.com.

6th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics August 1-6, 2016, Greater Noida (NCR), India, www.6icragee.com

IAS’5 5th International Conference on Geotechnical and Geophysical Site Characterisation, 5-9 September 2016, Gold Coast, Queensland, Australia http://www.isc5.com.au

IAS’5 5th International Conference on Geotechnical and Geophysical Site Characterisation, 5-9 September 2016, Gold Coast, Queensland, Australia http://www.isc5.com.au
WMESS aims to provide a forum for discussion of the latest findings and technologies in different fields of Earth Sciences, to give opportunities for future collaborations, to be a platform for sharing knowledge and experiences in the fields of Earth Sciences and to lead for providing a forum for early career researchers for presentation of their work and discussion of their ideas with experts in different fields of Earth Sciences.

The main mission of the "World Multidisciplinary Earth Sciences Symposium - WMESS" is to lead to contribute in multidisciplinary studies related with atmosphere, biosphere, hydrosphere, lithosphere and pedosphere of the Earth and interaction of the human with them. As another mission it will provide a forum for this diverse range of studies which report very latest results and document emerging understanding of the Earth's system and our place in it.

Topics of the Conference

- Tectonics & Structural Geology
- Engineering Geology
- Geotechnics
- Hydro-Hydrogeological Sciences
- Natural Hazards
- Oil, Gas & Coal
- Geothermal Energy
- Geomorphology
- Geochemistry, Mineralogy, Petrology & Volcanology
- Stratigraphy, Sedimentology & Palaeontology
- Geophysics & Seismology
- Geodesy, Photogrammetry & Cartography
- Informatics, Geoinformatics & Remote Sensing
- Mining Engineering
- Mineral Processing
- Blasting & New Technologies
- Natural Resources
- Environmental Sciences
- Energy, Resources & Pollution & the Environment
- Environmental Legislation
- Biogeosciences
- Geological Heritage & Geoparks
- Urban Planning
- Atmospheric Sciences
- Oceanography
- Climatology
- Glaciology
- Modelling and Soft Computing in Earth Sciences
- Medical Geology
- Occupational Health and Safety

Contact: mess@mess-earth.org

The conference topics will respond to significant issues that are interested the scientific community worldwide. For this reason the scheduled sessions and special workshops will mainly focus on:

- Industrial and Hazardous Waste Regulation / Legislation
- Industrial and Hazardous Waste Characterization
- Industrial and Hazardous Waste Management Practices Treatment and Disposal
- Industrial and Hazardous Waste Production, Minimization and Recycling
- Hazardous Waste Toxicology - Risk Assessment
- Treatment of Hazardous Waste Landfill and Mine Leachates
- Contaminant Release and Transport
- Management of Contaminated Sites
- Special Waste (Medical, Radioactive, WEEE, Agro-Industrial, Asbestos, Plastics etc.)
- War and Environmental Impact
- Waste - to - Energy Concepts
- Case Studies

Organizing Secretariat: hwm.conferences@enveng.tuc.gr

2nd International Specialized Conference on Soft Rocks
29-30 September 2016, Cartagena, Colombia

Contact Person: Mario Camilo Torres Suarez
Address: Calle 12C, No. 8-79 Of. 512
Telephone: +57 1 3340270
Fax: +57 1 3340270
E-mail: sociedadcolombianadegeotecnia@scg.org.co
Shaping the Future of Geotechnical Education
International Conference on Geo-Engineering Education
20 - 22 October 2016, Minascentro, Belo Horizonte, MG, Brazil

SFGE 2016 is the fourth in the series of international conferences about geo-engineering education organised by the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) through its Technical Committees and Member Societies. The previous conferences were:

- 1st International Conference on Geotechnical Engineering Education and Training, Sinaia, Romania, 12-14 June, 2000
- Shaking the Foundations of Geo-Engineering Education (SFGE 2012), Galway, Ireland, 4-6 July, 2012

The latest conference was the first to be organised by TC306, the Technical Committee on Geo-Engineering Education of ISSMGE.

SFGE 2016 – Shaping the Future of Geotechnical Education is also organised by TC306 and will take place in Belo Horizonte, Brazil, 19-20 October, 2016, in conjunction with a series of geotechnical events organised by the Brazilian Society for Soil Mechanics and Geotechnical Engineering (ABMS). At least two sessions will be shared by SFGE 2016 and GeoJovem 2016, the Brazilian and South American Young Geotechnical Engineers’ conference, thus bringing together educators and students.

The Geotechnical Engineering and Rock Mechanics Brazilian conferences will also create a proper opportunity to enrich SFGE 2016 sessions with contributions from industry regarding geo-engineering education.

The two most recent conferences have created a momentum. Those who have attended can testify that the way they address geo-engineering education has been positively and significantly influenced by those conferences. SFGE 2016 shall be no different, so do plan to attend!

Topics

- Effective education in geotechnical principles
- Innovative geotechnical courses and programs
- Laboratory coursework
- Field coursework
- Project based coursework
- Active learning
- The role of internships
- IT applications
- Opinion articles

Contact: sfge2016@cobramseg2016.com.br

GeoAsia 6 - 6th Asian Regional Conference on Geosynthetics

RARE 2016 Recent Advances in Rock Engineering
16-18 November 2016, Bangalore, India, www.rare2016.in

World Tunnel Congress 2017
Surface problems – Underground solutions
9 to 16 June 2017, Bergen, Norway www.wtc2017.no

"Surface problems – Underground solutions" is more than a slogan; for ITA-AITES and its members it is a challenge and commitment to contribute to sustainable development. The challenges are numerous and the availability of space for necessary infrastructure ends up being the key to good solutions. The underground is at present only marginally utilized. The potential for extended and improved utilization is enormous.

EUROCK 2017
13-15 June 2017, Ostrava, Czech Republic

Contact Person: Prof. Petr Konicek
Address

GeoAfrica 2017
3rd African Regional Conference on Geosynthetics
9 – 13 October 2017, Morocco

11th International Conference on Geosynthetics (11ICG)
16 - 20 Sep 2018, Seoul South Korea
csyoo@skku.edu

10th Asian Rock mechanics Symposium - ARMS10
October 2018, Singapore

Prof. Yingxin Zhou
Address:
1 Liang Seah Street
#02-11 Liang Seah Place
SINGAPORE 189022
Telephone: (+65) 637 65363
Fax: (+65) 627 35754
E-mail: eyingxin@dsta.gov.sg

AFTES International Congress
"The value is Underground"
13-16 November 2017, Paris, France

Following the success of the last conference held in Sydney, Australia in 2014, the HKUST is pleased to invite you to attend the 7th International Conference on Unsaturated Soils (UNSAT2018) in August 2018. This conference will cover a broad range of themes and provide an excellent opportunity for worldwide academics, engineers, scientists, government officials and planners to present and exchange the latest developments in the research and application of unsaturated soil mechanics.

The 2nd Blight Lecture will be delivered by Professor Delwyn Fredlund at UNSAT2018.

Conference themes
Fundamental soil behaviour
- Micro- and macro-structure
- Water retention
- Stress-strain behaviour
- Multi-physic couplings (e.g., temperature, chemistry, biology etc.)
- Cyclic/dynamic behaviour
- Behaviour of multiphase soils, soft and hard rocks

New equipment and testing methods
- Advanced and new testing equipment
- Sensors for suction/moisture measurements
- In-situ/field testing

Modelling
- Constitutive modelling
- Physical modelling including centrifuge
- Numerical modelling and analysis

Geotechnical engineering problems
Infrastructural developments such as earth and rockfill dams, roads, embankments and railways
Natural and man-made hazards such as stability of fill slopes and rainfall-induced landslides
Foundations in unsaturated soils
Mining engineering

Energy and environmental issues
Bio-engineering
Vegetation effects
Climate change, soil-atmospheric interaction
Geo-environment such as capillary barriers, nuclear waste disposal and CO₂ sequestration
Geo-energy such as energy piles, gas hydrates

Contact Us

Dr Anthony Leung (Technical Secretary)
School of Science and Engineering
University of Dundee
Tel: (44)01382 384390; Fax: (44)01382 382398

Ms Shirley Tse (Administrative Secretary)
Geotechnical Centrifuge Facility
The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HKSAR
Tel: (852) 2358-0216; Fax: (852) 2243-0040
E-mail: unsat2018@ust.hk

14th ISRM International Congress
2019, Foz de Iguacu, Brazil

Contact Person: Prof. Sergio A. B. da Fontoura
E-mail: fontoura@puc-rio.br
The idyllic beach to Inskip Point in Queensland, Australia, had blue water golden sand and attracts campers and nature lovers. However, on Saturday night, an enormous hole opened suddenly and swept away tents and vehicles, causing chaos to campers who evacuated the area.

It seems that fishermen were the first who realized that something was happening. The campers said they heard a noise like a storm and barely had time to leave before the beach disappears under water - along with tents, caravans, small vehicles and other possessions.

That point of the beach is about 7.5 meters under water. The sea ‘swallowed’ about 200 meters of beachfront.

The campers evacuated the beach and access is no longer allowed to a large part of it.

A Queensland Government geotechnical engineer thinks that the event may have been a "near-shore landslide" rather than a sinkhole.

Watch the video provided under media below!

https://www.youtube.com/watch?v=QSFQGoztDI

(Geoengineer.org, Monday, 28 September 2015)

Huge sinkhole among houses in Hertfordshire

Dozens of families were left without water and gas. Miraculously there were no casualties in Hertfordshire in London, UK when a twenty-meter hole in the ground, opened up!

The phenomenon is becoming increasingly alarming, taking a global dimension. The sudden decline of soil in the British area caused no casualties, but left 58 families without water, gas and electricity, as well as the city’s infrastructure collapsed.

A large number of inhabitants were forced to evacuate the area, until it is safe to return to their homes and repair the damage to the networks.

The sinkhole created a diameter of twenty meters and a depth of ten. A few days ago a small hole had appeared in the road, however, authorities felt that it was caused by the intense rains that preceded.

In August a twelve-meter sinkhole had appeared in the main street of Manchester. Such phenomena have been recorded around the globe.

(Geoengineer.org, Wednesday, 07 October 2015)
Το υψόμετρο του ιερού Φάγκο (δεξιά) έχει πέσει στον άξονα της θάλασσας. Αρχαία κατάρρευση ιερατείας «αγίωσε τσουνάμι 180 μέτρων»

Σχεδόν το μισό ιεροτέμενο στο νησί Φάγκο (δεξιά) έχει πέσει στον άξονα της θάλασσας.

Τα αποτελέσματα της καταστροφής είναι ακόμα ορατά σε αυτό το ιερατειαγωνές νησί του Πράσινου Ακρωτηριού: η μια πλευρά του ιεροτέμενου λειτεί, στη θέση της μόνο μια μεγάλη γεωλογική ουλή. Σε ένα άλλο νησί, 55 χιλιόμετρα μακριά, ογκόλιθοι των 700 τόνων δείχνουν να έχουν μετακινηθεί μαστηριωδώς 200 μέτρα πάνω από την επιφάνεια της θάλασσας.

Τι συνέβη τα δύο νησιά; Μια καταλήψη βιβλικών διαστάσεων που έκανε τους τσουνάμι 200 μέτρων, ένα από τα μεγαλύτερα στη γεωλογική αρχεία, προτινεί νέα μελέτη στη διαδικτυακή έκδοση του Science.

Η καταλήψη συνέβη πριν από 73.000 χρόνια στο νησί Φάγκο, ξέφωνα από τις ακτές της τεχνητής Αρκτικής, στην πραγματικότητα ένα ιεροτέμενο που ορίζεται σήμερα σε ύψος 2.829 μέτρων και εκχύνεται τακτικά, περίπου κάθε 20 χρόνια.

Κανείς δεν αμφισβητεί ότι, κάποια στιγμή στο μακρινό παρελθόν, ο μισός ιερατειακός κόμως κατέρρευσε -τα πετρώματα από τα οποία αποτελούσαν θάμνη απεικονίζοντας παραφάντας στο νυχτερινό. Αυτό για το οποίο δεν έχει βεβαιοθετηθεί ακόμα, οι γεωλόγοι είναι το εάν η πλαγιά κατέρρευσε ολόκληρη θαλάσσια πολυετεία, ή πολλές νησιωτικές μικρές καταστροφές.

Η νέα έρευνα, την οποία υπογράφοντας διεθνές ομάδα ερευνητών, κατάληγε στην εξήγηση ότι η πλαγιά της ηλικίας περίπου 160 κυβικά χιλιόμετρα βράχου, πέρασε στη μία στη θάλασσα.

Οι μάρτυρες αυτού του καταστροφικού συμβάντος βρίσκονται ακόμα και σήμερα στο Σαντιάγο, ένα άλλο νησί στο ιαπωνικό μοριά στο ιερό του Πράσινου Ακρωτηριού. Οι ερευνητές παρατηρούν απογοήτευτοι από ραγισμός, ορισμένοι από τους οποίους έχουν βλέπει θανάτους διάστημα μέσα στο νησί, ακόμα και σε υψόμετρο 200 μέτρων και σε απόσταση 600 μέτρων από τις ακτές.

Οι ογκόλιθοι στο νησί Σαντιάγο διαφέρουν από τη γεωλογία του τοπίου. Οι ερευνητές έκρυβαν οιονόματα της Ιαπωνίας και της Ιαπωνίας της Τουρκίας, ένας τοπικός σημαντικός κύκλος ερευνητών με την ορολογική ισχύ της και την επιλογή της ένας ΗΠΑ της Καναδάς, ένας Ιαπωνίας της Ιπποτελής, που είναι ελαφρά κατά τη διάρκεια της Μεγάλης Πόλης του 1973. Αυτό, συνεπάγεται και ότι οι ανθρώποι έχουν διαφέρει από τον πρόσφατο του νησιού. Αυτό προκάλεσε τον Ρόκαρτσκι Ραμόλφ, πρόσωπο της ιστορίας της μελέτης, «οι κάτοικοι του Πράσινου Ακρωτηριού έχουν σήμερα ανατρέξει για να εκπληρώσουν τα μέτρα της καταστροφής της.»

Τα ιεράτημα του Φάγκο, τρομάζει για την αρχαιολογία της Αρκτικής, της Ιαπωνίας και της Φλόριντα της Πελοποννήσου, έχει διαφέρει από την προηγούμενη το περιοδικό του, ένας περίπου κάτοικος της Αρκτικής, που είναι ελαφρά κατά τη διάρκεια της Μεγάλης Πόλης του 1973, που είναι ελαφρά κατά τη διάρκεια της Μεγάλης Πόλης του 1973.
Hazard potential of volcanic flank collapses raised by new megatsunami evidence

Ricardo S. Ramalho, Gisela Winckler, José Madeira, George R. Helffrich, Ana Hipólito, Rui Quartau, Katherine Adena and Joerg M. Schaefer

Abstract

Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet, evidence for the generation and impact of collapse-triggered megatsunamis and their high run-ups remains scarce or is highly controversial. Therefore, doubts remain on whether island flank failures truly generate enough volume flux to trigger giant tsunamis, leading to diverging opinions concerning the real hazard potential of such collapses. We show that one of the most prominent oceanic volcanoes on Earth—Fogo, in the Cape Verde Islands—catastrophically collapsed and triggered a megatsunami with devastating effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic He dating of tsunamigenic deposits found on nearby Santiago Island, which attest to the impact of this giant tsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo’s flank failure involved at least one fast and voluminous event that led to a giant tsunami, in contrast to what has been suggested before. Our observations therefore further demonstrate that flank collapses may indeed catastrophically happen and are capable of triggering tsunamis of enormous height and energy, adding to their hazard potential.

Onshore and offshore evidence for Fogo’s flank collapse.

Fogo’s flank collapse is documented by collapse scars onshore and by an avalanche debris field extending offshore, as illustrated in this digital elevation map of Fogo and Santiago and the surrounding seafloor. The study area on northern Santiago is marked with a rectangle, and the blue dots represent the general location of the tsunamigenic deposits reported in this study. The event timeline at the top compares the age interval previously suggested for Fogo flank collapse (in red) with the depositional age interval for Santiago’s tsunamigenic deposits obtained in this study (blue). Topography of Fogo and Santiago corresponds to digital elevation model at 1:5000 scale. Seafloor mosaic is composed of low-resolution bathymetry (30 arc-second interval grid) and higher resolution bathymetry (200 m).

http://advances.sciencemag.org/content/1/9/e1500456.full
Η ανάπτυξη αυτής της απομακρυσμένης κοινότητας, αποτελεί παράδειγμα προς μίμηση για την ελληνική επαρχία, τους πολιτικούς της παράγοντες, αλλά και για κάθε πολιτικό. Ο δήμαρχος του ορεινού χωριού της Ανάβρας Μαγνησίας, αποδεικνύει ότι υπάρχουν περιπτώσεις Ελλήνων που πιηγαίνουν κόντρα στην διαφθορά και την μηζίρια, και ενδιαφέρονται πραγματικά για τον τόπο τους.

Λίγα λόγια για την Ανάβρα, ένα «γαλατικό» χωριό, όπως το χουν σχεδόν κάποιο δημοσιεύμα, που αντιστέκεται στη μιζίρια και τα ήθη των καριών.

Πρόκειται για ένα απομακρυσμένο ορεινό χωριό που κατάφερε μετά από συστηματική προσπάθεια, όχι μόνο να σταθεί άρρητο, αλλά να γίνει πρότυπο ανάπτυξης. Για τη μεγάλη ανάπτυξη που έρχεται από την Ανάβρα του νομού Μαγνησίας. Στις δυτικές πλαγιές της Οθρίου, σε υψόμετρο 1.000 μέτρων και σε απόσταση 40 χιλιόμετρων από την κοντινότερη κωμόπολη (τον Αλμυρό), οι 700 κάτοικοι, άλλοι τους κτηνοτρόφοι, απολαμβάνουν εισοδήματα από 30 έως 100 χιλιάδες ευρώ και μια ποιότητα ζωής που μπορεί να συγκριθεί μόνο με την πλουσία Ελβετία.

Η μάχη με τη μιζίρια άρχισε τις αρχές της δεκαετίας του 90, όταν τα ηγία της κοινότητας πήρε ο Δημήτρης Τσουκάλας, ένας άνθρωπος που άρχισε την Άθη για να γυρίσει στο χωριό του και να προσφέρει στη γενικούρα του. Με ένα δίκαιο το χαράκτηρα 4 χρόνων, είναι από τότε κοινόταρχης της Ανάβρας. Η κατάσταση που συνάντησε ήταν απελπιστική. Τα γελάδια, οι χοίροι και τα πρόβατα κυκλοφορούσαν ελεύθερα στο χωριό. Στους χωματάδους. Δεν υπήρχε πουθενά άσπαλος. Το χειμώνα περιπατούσε μέσα στη λάσπη, το καλοκαίρι η σκόνη σε έπινε.

«Προτεραιότητά μας ήταν η κατασκευή κτηνοτροφικών πάρκων, για να μπεί τέλος στην αναρχία που επικρατούσε. Με φως, νερό και σωστή δόμηση, σταβλίζουμε τα ζώα τους το χειμώνα. Τους υπολοίπους μήνες βόσκουμε ελεύθερα στα βουνά. Αυτός είναι και ο λόγος που το κρέας τους φημίζεται για την εξοχιστή γεύση του. Η κτηνοτροφία είναι η πηγή των εισοδημάτων στην Ανάβρα», λέει στο ΕΤ.Κ ο πρόεδρος της κοινότητας.
χωριού και αν θέλουμε νυχτερινή ζωή πεταγόμαστε μέχρι τον Δομόκο ή τον Άλμυρο», λέει στον ΕΤ.Κ η Νικη Μπλιάνη.

Οι πληκκουμένοι ασφάλεια με τη μόνιμη παρουσία της αγροτικής γιατρού. Η Ελένη Τριανταφυλλίου δέχεται 8 με 9 άτομα καθημερινά στο ιατρείο. Πήγε στην Άνδρα στις 5 Αυγούστου και για τους επόμενους 9 μήνες θα μείνει εκεί να ικάνητη τυχερή που βρέθηκε σε ένα τόσο φιλικό περιβάλλον. Μάλιστα, δεν επιβιβάζονται από την τοπή της, γιατί μενεί σε διαμέρισμα που της παραχώρησε η κοινότητα (όπως και οι τρεις δάσκαλοι).

Ο Αποστόλης Καπέλος και ο Παλώδιος Κανατούλης είναι δύο νέοι κτηνοτρόφοι. Πάκτης στην ποδοσφαιρική ομάδα του χωριού (Α.Ο. ΟΘΡΥΣ), κάθεται στο καφενείο και συζητούν πώς θα αντιμετωπίσουν τον ΔΟΜΟΚΟ, την ιαχυρότητα ομάδα της περιοχής. Περιφέρευται για την προσωπική της επικοινωνία και ιδιαίτερα για την προσωπική του κατάρα του εργασιακού πλάτης.

Εδώ κρατάει ακόμα το έμισο της δροστέλας , όπως οι νοικοκυριά πλένουν ρούχα και χαλί με τα ορμητικά νερά των πηγών. Με περιφορογραμμένη έκταση, συναλλαγματικό εμβόλιο 240 στρεμμάτων, που αποτελεί ταυτόχρονα και μουσείο παράδοσης. Άλλη μια ευκαιρία για να εισπράττει η κοινότητα έσοδα, καθώς πολλά σχολικά εκδηλώνουν ενδιαφέρον για επίσκεψη και αναμένεται να μπει συμβολικό εισιτήριο για τα έξοδα συντήρησης του.

Το πλέον μεγαλόπνον σχέδιο, αυτή την περίοδο, είναι η επικείμενη εγκατάσταση συστήματος θεληθυμάνωσης. Με προϋπολογισμό 1.700.000 ευρώ (από ευρωπαϊκά κονδύλια) και με μελέτη από το ΤΕΙ Κοζάνης η Περιφέρεια έχει περιθώρια ύποπτη ουδέτερη -να. Ένας κεντρικός λιμένας θα τοποθετηθεί στο πάνω μέρος του χωριού και έπειτα θα διαχειριστούν υπόγεια αγωγά από τους δρόμους της Ανάβρας και κατά νερό. Το κάθε περίπτωση θα συνδέεται με το σύστημα θελημάνωσης και θα έχει ολοκληρώσει το χειμώνα τέσσερα νερό και θέρμανση, με μια ελαχίστη επιβάρυνση. Θα λειτουργεί με την καύση βιομάζας (κοπρών τζέζων, ξερά φύλλα, ρόθο κ.ά.).

Η μεγαλύτερη προβλήτα στον κόσμο!

Η πόλη Progreso, στην μεξικανική πολιτεία του Κουικάταν, μπορεί να υπερηφανεύεται για τη μεγαλύτερη προβλήτα στον κόσμο... Κατασκευασμένη από οπλισμένο πλαστικό, η προβλήτα αντλεί αέρα από τον Κόλπο του Μεξικού σε μια απόσταση 6,5 χιλιομέτρων, και μοιάζει πολύ σε γέφυρα που φτάνει σε κάποια μακρινή χώρα. Το ασυνήθιστα μεγάλο μήκος είναι αναγκαίο για να μπορούν τα μεγάλα πλοία να ελλιμενίζονται, δεδομένου ότι το λιμάνι του Κουικάταν είναι πολύ ρηχό.

Η προβλήτα ήταν αρχικά μήκους 2.100 μέτρων και κατασκευάστηκε μεταξύ 1937 και 1941, αντικαθιστώντας ένα μικρότερο αντίκτυπο της προβλήτας της πόλης του Ατλάντικο. Το μυστικό του νέου υλικού κρύβεται σε έναν σκελετό από κοίλα λεπτέπλετα σωληνάκια, με τοιχώματα περίπου 1.000 χιλιομέτρων, που χτίζεται στις αρχές και τελειώνεται από το πέντε άτομα που περιλαμβάνονται στην επιτροπή. Η προβλήτα έχει αντισταθεί στις δύσκολες συνθήκες της ακτής του Κουικάταν, καθώς είναι πολύ ρηχή, και η αντισταθείται στις κυκλικές και τροπικές κακοκαιρίες.

(Πηγή: perierga.gr, 9 Οκτωβρίου 2015, http://www.pentapostagma.gr/2015/10/h-%ce%bc%ce%b5%ce%b1%ce%bb%cf%8d%cf%84%ce%b5%cf%81%ce%b7-%cf%80%cf%81%ce%bf%ce%b2%ce%bb%ce%ae%cf%84%ce%b1-%cf%83%cf%84%ce%bf%ce%bd-%ce%ba%cf%8c%cf%83%ce%bc%ce%bf.html#ixzz3o9oetx Vy)
Τα νέα «πουπουλένια» υλικά της Boeing μπορεί να στοθεί επάνω στο ντελικάτο κεφαλάκι από «χνουδωτούς» σπόρους μιας πικραλίδας.

Σύμφωνα με τους επιστήμονες της Boeing, το καινοτόμο υλικό από... αέρα καπνιστό είναι τόσο ανθεκτικό ώστε αν τυλιχθεί γύρω από ένα σήργι να μπορεί να το σώσει σε περίπτωση πτώσης του από ύψους... 25 ορόφων.

Γέφυρες που προκαλούν ίλιγγο

Από την Κριμαία έως το Περού και από την Κίνα μέχρι την Κίνα οκτώ μοναδικές γέφυρες αποτελούν πρόκληση για κάθε επισκέπτη μια και η διάσχιση τους παραμοιώνεται ακόμα και με μια βόλτα με το τρενάκι του τρόμου.

Κρεμαστή γέφυρα στη Γερμανία προκαλεί ίλιγγο!

Η νέα γέφυρα στο φαράγγι Geierley στη δυτική Γερμανία αποτελεί μία πρόκληση για τους επισκέπτες, άλλωστε αυτός ήταν και ο σκοπός της κατασκευής της στην περιοχή, να προσελκύσει περισσότερους -και όχι μόνο- τουρίστες που θέλουν να τη διαβάσουν στενώς κάτω από τα πόδια τους το απόλυτο κενό. Η γέφυρα χρειάστηκε μόνο 130 μέρες για να φτιαχτεί και δεσπόζει πλέον στο καταπράσινο δάσος ανάμεσα στις πόλεις Morsdorf και Sosberg, κοντά στα σύνορα με το Λουξεμβούργο.
Η οικονομία της περιοχής έπρεπε να ενισχυθεί και για το λόγο αυτό σκέφτηκαν να δημιουργήσουν εδώ ένα άξονα που θα τραβούσε την προσοχή όλων. Σύμφωνα με την οικο

νομοτεχνική μελέτη, η γέφυρα θα προσελκύσει 170.000 επι-

σκέπτες το χρόνο, με αρκετούς από αυτούς να διανυκτερεύ-

ουν στα καταλύματα των δύο πόλεων. Έτσι η τοπική οικονο-

μία θα ενισχυθεί πέραν του γεγονότος ότι ένας περίπατος

στο δάσος με θέα από ψηλά είναι δ,τι καλύτερο θα μπορούσε να ζητήσει κάποιος.

(perierga.gr, 8 Οκτωβρίου 2015,
http://www.pentapostagma.gr/2015/10/k%cf%81%ce%b5%ce%bc%ce%b1%cf%83%cf%84%ce%ae-%ce%b3%ce%ad%cf%86%cf%85%cf%81%ce%b1-%cf%83%cf%84%ce%b7-%ce%b3%ce%b5%cf%81%ce%bc%ce%b1%ce%bd%ce%af%ce%b1-%cf%80%cf%81%ce%bf%ce%ba%ce%b1%ce%bb%ce%b5%ce%af.html#ixzz3o9ghw9g9)
Geotechnical Safety and Risk V

Schweckendiek, T., Van Tol, A.F., Pereboom, D., Van Staveren, A., Cools, P.M.C.B.M.

Geotechnical Risk and Safety V contains contributions presented at the 5th International Symposium on Geotechnical Safety and Risk (5th ISGSR, Rotterdam, 13-16 October 2015) which was organized under the auspices of the Geotechnical Safety Network (GEOSNet) and the following technical committees of the of the International Society of Soil Mechanics and Geotechnical Engineering (ISSGME):

- TC304 Engineering Practice of Risk Assessment & Management
- TC205 Safety and Serviceability in Geotechnical Design
- TC212 Deep Foundations
- TC302 Forensic Geotechnical Engineering

Geotechnical Risk and Safety V covers seven themes:

1. Geotechnical Risk Management and Risk Communication
2. Variability in Ground Conditions and Site Investigation
3. Reliability and Risk Analysis of Geotechnical Structures
4. Limit-state design in Geotechnical Engineering
5. Assessment and Management of Natural Hazards
6. Contractual and Legal Issues of Foundation and (Under)Ground Works
7. Case Studies, Monitoring and Observational Method

The 5th ISGSR is the continuation of a series of symposiums and workshops on geotechnical risk and reliability, starting with LSD2000 (Melbourne, Australia), IWS2002 (Tokyo and Kamakura, Japan), LSD2003 (Cambridge, USA), Georisk2004 (Bangalore, India), Taipei2006 (Taipei, Taiwan), the 1st ISGSR (Shanghai, China, 2007), the 2nd ISGSR (Gifu, Japan, 2009), the 3rd ISGSR (Munich, Germany, 2011) and the 4th ISGSR (Hong Kong, 2013)

(IOS Press, October 2015)
ΗΛΕΚΤΡΟΝΙΚΑ ΠΕΡΙΟΔΙΚΑ

Κυκλοφόρησε το Τεύχος 5 του 9ού Τόμου του ISSMGE Bulletin (Οκτωβρίου 2015) με τα παρακάτω περιεχόμενα:

Research Highlights
Federal University of Rio Grande do Sul (UFRGS), Brazil

Report from Member Society
Kazakhstan Geotechnical Society (KGS) – First Kazakhstan-USA Geotechnical Engineering Workshop

Young Members’ Arena
Experimental mechanics at the grain-scale in sand: Recent work from the geo-mechanics lab of Grenoble

Conference Report
The XVI European Conference of Soil Mechanics and Geotechnical Engineering - Edinburgh, UK on 13th – 17th September 2015
International Workshop on Geotechnology for Natural Hazards

Reports from ISSMGE Foundations Recipient

Hot News
Geomodels in Engineering Geology – an introduction

Event Diary

Corporate Associates

Foundation Donors

www.geoengineer.org

Κυκλοφόρησε το Τεύχος #128 του Newsletter του Geoengineer.org (Οκτωβρίου 2015) με πολλές χρήσιμες πληροφορίες για όλα τα θέματα της γεωμηχανικής. Υπενθυμίζεται ότι το Newsletter εκδίδεται από τον συνάδελφο και μέλος της ΕΕΕΕΓΜ Δημήτρη Ζέκκο (secretariat@geoengineer.org).

Κυκλοφόρησε το Τεύχος #22 του ITACET Newsletter (Οκτωβρίου 2015) με τα παρακάτω περιεχόμενα:

• President’s address: Eng. Abdullah bin Abdulrahman Al-Muqbel
• Interview: Pauli Arenram, ITATech Committee Chairman
• Coming soon Shanghai17-18.10.2015. Challenges in Undersea Deep Long Distance Tunnels(UDLDT): Geotechnical aspect and Structural Design of Shield Tunnels
• Next events Tunnelling and Landslides. 10-11.012016. Riyadh, Saudi Arabia Rockfall Protection Techniques 12.01.2015 - Riyadh, Saudi Arabia
• ITACET Foundation Scholarship 2015
ΕΚΤΕΛΕΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΕΕΕΕΓΜ (2012 – 2015)

Πρόεδρος: Χρήστος ΤΣΑΤΣΑΝΙΦΟΣ, Δρ. Πολιτικός Μηχανικός, ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε.
president@hssmge.gr, editor@hssmge.gr, ctsatsanifos@pangaea.gr

Α’ Αντιπρόεδρος: Παναγιώτης ΒΕΤΤΑΣ, Δρ. Πολιτικός Μηχανικός, ΟΜΙΛΟΣ ΤΕΧΝΙΚΩΝ ΜΕΛΕΤΩΝ Α.Ε.
otmate@otenet.gr

Β’ Αντιπρόεδρος: Μιχάλης ΠΑΧΑΚΗΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε.
mpax46@otenet.gr

Γενικός Γραμματέας: Μαρίνα ΠΑΝΤΑΖΙΔΟΥ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε.
secretary@hssmge.gr, mpanta@central.ntua.gr

Ταμίας: Γιώργος ΝΤΟΥΛΗΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε.
gdoulis@edafomichaniki.gr

Έφορος: Γιώργος ΜΠΕΛΟΚΑΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε.
gbelokas@teiath.gr, gbelokas@gmail.com

Μέλη:
Ανδρέας ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε.
aanqn@central.ntua.gr

Μανώλης ΒΟΥΖΑΡΑΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Е.П. Е.
e.vouzaras@gmail.com

Μιχάλης ΚΑΒΒΑΔΑΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Е.П. Е.
kavvadas@central.ntua.gr

Αναπληρωματικά Μέλη:
Χρήστος ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.
anag@civil.auth.gr, canagnostopoulos778@gmail.com

Σπύρος ΚΑΒΟΥΝΙΔΗΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.
scaovounidis@edafos.gr

Δημήτρης ΚΟΥΜΟΥΛΟΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.
coumoulos@castorltd.gr

Μιχάλης ΜΠΑΡΔΑΝΗΣ, Δ.Π.Π.Μ.Π.Μ. ΠΑΝΓΑΙΑ ΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.
mbardanis@edafos.gr, lab@edafos.gr

ΕΕΕΕΓΜ
Τομέας Γεωτεχνικής
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟΥ ΜΕΤΣΟΒΙΟΥ ΠΟΛΥΤΕΧΝΕΙΟΥ
Πολυτεχνειούπολη Ζωγράφου
15780 ΖΩΓΡΑΦΟΥ

Τηλ. 210.7723434
Ταχυδρομικός Αριθμός 210.7723428
Ηλ.Δι. secretariat@hssmge.gr, geotech@central.ntua.gr
Ιστοσελίδα www.hssmge.org (υπό κατασκευή)

«ΤΑ ΝΕΑ ΤΗΣ ΕΕΕΕΓΜ» Εκδότης: Χρήστος Τσατσανίφος, τηλ. 210.6929484, τοτ. 210.6928137, ηλ-δι. ctsatsanifos@pangaea.gr, editor@hssmge.gr, info@pangaea.gr

«ΤΑ ΝΕΑ ΤΗΣ ΕΕΕΕΓΜ» «αναρτώνται» και στην ιστοσελίδα www.hssmge.gr

TA NEA ΤΗΣ ΕΕΕΕΓΜ – Άρ. 83 – ΟΚΤΩΒΡΙΟΣ 2015 ΣΕΛΙΔΑ 46